4th EuroCoppice Training School Boppard, Germany July 17-23, 2016

Contents:

- ecological features of coppices
- measuring biological diversity
- sampling of vegetation communities

Radim Hédl

Institute of Botany, The Czech Academy of Sciences Brno, Czech Republic <u>http://ekolbrno.ibot.cas.cz</u> <u>http://www.longwood.cz</u>

Coppicing

Short-rotation forest management system utilizing natural resprouting ability of deciduous tree species

Converted coppice-with-standards Bacín, central Bohemia, Czech Republic

Why care about coppicing?

Ancient forest management system, once widespread

Likely shaped composition and diversity of forest communities

Recent focus of conservationists and foresters

- declining species and habitats
- woody biomass production

Oliver Rackham Classic of woodland history research (Hayley Wood, England, September 2008)

HAYLEY WOOD Tealibidity and Ecology OLIVER RACKHAM

Coppicing in European lowlands in the Middle Ages

Charters A.D.1249

Szabó et al., 2015, Journal of Historical Geography

Coppicing cycles – how often were forests cut

Mikulov estate (SE Czech Repubic)

Urbarium from 1384:

"Das holcz, das do get niderhalb des wegs durich die Chlausen, das haist der Lelasch, und ist deselb zeit 2 jar alt gevesen; wann er zw 7 jarn chumpt, so schaczt mann für 36 lb. und 2 lb. ze leitchauff."

Forest description from 1692:

© P. Szabó

Coppicing in the 19th century

Moravia, eastern Czech Republic, 28,000 km² Source: historical forest database, www.longwood.cz

Perspectives of coppicing research in ecology

- 1. Long-term legacy of coppicing at the landscape scale
- 2. Consequences of coppicing abandonment in the 20th century
- 3. Effects of coppicing restoration

Main ecological effects of coppicing

• shifting mosaic of light and dark environments

Supporting variety of species strategies Plant species persist in soil seed bank (see the next slide)

nutrient uptake and dynamics (in woody biomass)

Moderating competition asymmetry through limiting resources Shifting mosaic of nitrogen poor – nitrogen rich patches

On a long-term

creation of <u>specific habitats</u>

Abiotic conditions and biotic communities

 maintaining <u>high biodiversity</u> on landscape level Many of the species-richest woodland communities in Europe

Long-term soil seed bank dynamics

Following the conversion of coppice-with-standards to high forest Van Calster et al. 2008, Applied Vegetation Science

Some of the forest habitats historically formed by coppicing

- Alluvial forests
- Oak-hornbeam forests
- Thermophilous oakwoods
- Ravine forests
- Acidophilous oakwoods

All are listed more specifically in the EU Habitats Directive (Natura 2000 habitats)

© R. Hédl

1	LBB01	Galio sylvatici-Carpinetum betuli		
2	LBB02	Stellario holosteae-Carpinetum betuli	Example in the Cz historica	
3	LBB03	Carici pilosae-Carpinetum betuli		
4	LBB04	Primulo veris-Carpinetum betuli		
5	LBC01	Galio odorati-Fagetum sylvaticae		
6	LBC02	Mercuriali perennis-Fagetum sylvaticae		
7	LBC03	Carici pilosae-Fagetum sylvaticae		
8	LBF01	Aceri-Tilietum		
9	LBF02	Mercuriali perennis-Fraxinetum excelsioris		
10	LBF03	Arunco dioici-Aceretum pseudoplatani		
11	LCA01	Lathyro collini-Quercetum pubescentis		
12	LCA02	Lithospermo purpureocaerulei-Quercetum pubescentis		
13	LCA03	Euphorbio-Quercetum		
14	LCB01	Quercetum pubescenti-roboris		
15	LCB02	Carici fritschii-Quercetum roboris		
16	LCC01	Sorbo torminalis-Quercetum		
17	LCC02	Genisto pilosae-Quercetum petraeae		
18	LCC03	Melico pictae-Quercetum roboris		
19	LDA01	Luzulo luzuloidis-Quercetum petraeae		
20	LDA02	Viscario vulgaris-Quercetum petraeae		
21	LDA03	Vaccinio vitis-idaeae-Quercetum roboris		
22	LDA04	Holco mollis-Quercetum roboris		

Examples of plant communities in the Czech Republic historically related to coppicing

Carpino-Fagetea

Quercetea pubescentis

Quercetea roborispetraeae

Abandoned coppice resampled after 50 years

Děvín, southern Moravia, Czech Republic Vascular plants: Species richness impoverishment R. Hédl, unpublished

Chronosequence in post-coppicing beechwoods

Apennines, Central Italy Canullo et al., 2011, Folia Geobotanica

100 ·

Chronosequence: Replacement of time series with stands of corresponding age

Chronosequence in coppiced forest Norfolk, UK

Ash and Barkham, 1976, Journal of Ecology

FIG. 4. Numbers of herb and shrub species in the field layer at different times after coppicing: (a) annuals (a total of 20 species involved); (b) biennials (7); (c) perennials of open sites (30); (d) perennials of shaded sites (30).

11-year observation of species richness in coppices England

Mason and MacDonald, 2002, Biodiversity and Conservation

Effect of coppicing on plant species richness and coverage

Utinkův háj, Southern Moravia, Czech Republic 4 years in herbaceous layer after coppicing establishment Hédl et al., Folia Geobotanica, in press

Utinkův háj, temporal development since 2012

Just after canopy cutting Winter 2011-2012

1st year – Sept. 2012 Resprouting oaks

Biodiversity

Very complex phenomenon Several possible aspects:

- organizational levels (from genes to biomes)
- taxonomic and functional diversity
- inventory (richness) and relative (heterogenity)

Always consider which category of diversity you want to measure...

From Magurran, 2004, Measuring Biological Diversity

Biodiversity types in ecology

R.H. Whittaker, 1960, Ecological Monographs

- Alpha-diversity: richness in plots, small areas
- Beta-diversity: relative differences between plots
- Gamma-diversity: richness in landscapes, regions

Species-area relationship (SAR)

species number usually increases with sampling area

From Magurran and McGill, 2011, Biological Diversity

Species-area relationship (SAR)

in theory, distinct species assemblages can be defined by SAR sampling

From Magurran and McGill, 2011, Biological Diversity

Species richness in tropical rain forests

Beta-diversity of tree species in tropical rainforests

1ha plots in three regions of central and southern America

34 plots Panama16 plots Ecuador14 plots Peru

Condit et al. 2002, Science

Fig. 1. Sørensen similarity index between pairs of 1-ha plots as a function of distance between the plots. Only the four corner hectares of the BCI 50-ha plot were used to avoid undue influence of the single site. In Ecuador, the 25-ha plot was not included here, because species names have not yet been matched with the single hectares. Solid lines connect average values in various distance categories: red for Ecuador, black for Peru, and blue for Panama. Individual points for Peru were omitted to reduce clutter.

Forest vegetation diversity

Alpha- and beta-diversity 7 sites in the Czech Rep., 600 plots Hédl et al., unpublished

How to sample species richness

Individual-based

- each individual is recorded
- species are with counted abundances

Sample-based

- samples with species lists from plots, traps, etc.
- many samples in space or time

Species richness estimate accumulation and rarefaction curves

From Magurran, 2004, Measuring Biological Diversity

Species richness estimate

Rarefaction: statistical estimate from increasing number of sampling units

Number of samples

From Magurran, 2004, Measuring Biological Diversity

Sample-based rarefaction

comparing high vs. low deer density (left vs. right-hand side graphs and two time slices (green and brown)

Vild et al., Applied Vegetation Science

Sampling design

sampling units (mostly plots) in the landscape

systematic

random

preferential

From Hédl, 2005, Monitoring of vegetation change [in Czech]

Sampling design

Enable sampling of biodiversity on various spatial scales

Figure 5.3. Nested-quadrat design described by Reed et al. (1993) to investigate scale-dependence of vegetation-environment correlations in a Piedmont woodland in North Carolina. Square quadrat sizes less than 2 m on a side are 1 m, 0.5 m, 0.25 m, and 0.125 m on a side. The design was replicated in contiguous grid cells over a 256 m x 256 m study area (i.e., sixteen 16 m x 16 m cells).

Enable sampling of biodiversity on various spatial scales

The Whittaker Plot design

Figure 5.6. The Whittaker Plot design, a nested plot design (Shmida 1984).

Enable sampling of biodiversity on various spatial scales

Figure 6.1. Top: the original Whittaker Plot design (Shmida 1984). Bottom: The Modified-Whittaker Plot design (Stohlgren et al. 1995b).

Enable sampling of biodiversity on various spatial scales Sampling for genotypic diversity

Figure 5.12. A rendition of the sampling design offered by Bell and Lechowic (1991) to assess genotypic variation in two plant species and environmental heterogeneity in forests in Montreal, Canada.

Enable sampling of biodiversity on various spatial scales Forest inventory plots

Further reading

Magurran A.E. (2004) Measuring biological diversity. Blackwell Publishing.

Magurran A.E. & McGill B.J. (2011) Biological diversity: frontiers in measurement and assessment. Oxford University Press.

McGill B.J. et al. (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology & Evolution 30: 104-113.

Rackham O. (2009) Woodlands. HarperCollins UK.

Stohlgren T.J. (2007) Measuring plant diversity: lessons from the field. Oxford University Press.

Whittaker R.H. (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs 30: 279-338.