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Modelling methodologies focussed on different machine learning using 
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1. INTRODUCTION 

Spain has suffered from severe deforestation and intense exploitation of 

remaining forests for centuries, mainly for the use of fuelwood, charcoal, 

timber and pastures in the rural economy. Nevertheless, during the 20th 

century this trend has changed and, particularly in the second half of the 

century, reforestation plans and the flow of population towards the urban 

environment have contributed to the increment of forested areas and the 

abandonment of traditional forestry practices. As a result, the no-

management forestry in the last 4-5 decades has led to increasing 

stocking and density of forests all over Spain (Montero and Serrada 2013). 

The case of the Laurisilva forests in the Canary Islands is a good example 

of this scenario. The Laurisilva is a typical subtropical cloud forest in areas 

with mild temperatures, which occupies, in the Canary Islands, the north-

facing slopes of the western islands. Evergreen species of the genera 

Laurus, Ilex, Ocotea, Arbutus, etc. are typical of this ecosystem. Coppicing 

has been the traditional method of management for the exploitation of 

fuelwood, charcoal and small pieces of timber for agricultural activities 

and construction (Arozena et al., 2015). Nevertheless, in the last decades 

the society has shifted its preferences on the ecosystem services provided 

by the Laurisilva coppice forest from the traditional abovementioned 

forest resources to others like ecological, recreational, soil protection, etc.  



Even though a plethora of studies focused on various aspects of the 

Laurisilva, such as taxonomy (Llorent-Martínez et al., 2015), forest-climate 

interaction (Aboal et al 2013) or landscape dynamics (Arozena and 

Panareda 2013) can be found, the productivity of this ecosystem has not 

been sufficiently assessed. The low commercial value of the ecosystem 

services provided by the Laurisilva coppice can justify this lack of 

knowledge, but modern technologies like remote sensors can help to 

significantly reduce the cost of estimating this transcendent forest 

variable. 

Particularly, forest applications of LiDAR technologies have been widely 

developed during the last decade (Wulder et al., 2013). The generalization 

of LiDAR information has brought the possibility of having more than one 

consecutive flights. Based on the same principles as traditional interval or 

permanent inventory plots, consecutive LiDAR flights allow us assessing 

important variables for forest management and planning such as 

productivity and growth. Another important asset of having at least two 

consecutive flights is to control resources through monitoring harvesting 

activities carried out during the inter-flight season. 

One of the main objectives of the passive remote sensors has been to 

assess how forest systems change through time. Sentinel is currently the 

next-generation Earth observation mission, and provides free, full and 

open data for the user community. Sentinel-2 mission is particularly suitable 

to oversee changes in vegetation, as it monitors at high spatial, temporal 

and, especially, spectral resolution (Mas et al., 2016). 

The aim of the conduced research at the University of Eastern Finland (UEF) 

is to give an operationally valid tool for discriminating different kind of 

typologies in the Laurisilva coppice ecosystem, based on LiDAR and 

passive remote sensing data, to get their productivity according to the 

distinctive characteristics of each typology. 

 



2. MATERIAL AND METHODOLOGIES 
 

2.1. Study area 

The study area is located in a 1500-ha coppice forest, in the northwestern 

sector of the Tenerife island (Figure 1), between 200-1300 m.a.s.l. The 

minimum mean temperature in the coldest month is 6.8ºC and the 

maximum mean temperature in the hottest month is 26.6ºC. The mean 

annual precipitation is 511 mm. 

Laurisilva forest ecosystem is highly valuable in economic terms but also 

considering ecosystem services. It is characterised by a wide variety of 

species, trees such as willows, but all of them has regrowth capacity. 

Consequently, Tenerife’s evergreen forest has been extensively exploited 

as a coppice. Dominant species usually are Laurus, Erica, Ilex, Prunus, 

Myrica and Viburnum genre. The dominance of a given species depends 

on site conditions (Arevalo et al., 2008). Therefore, Laurisilva coppice forest 

generally have thin stems with mean canopy height of 10.5 m.   

 
Figure 1: Map location of the study area 

 



2.2. LiDAR DATA 

Canary Islands have been scanned with a LiDAR sensor in 2009, 2012 and 

2014. The average nominal point density was 0.5 pulses m-2. In terms of 

measurement accuracy and according to flight specifications, the 

precision in determining X and Y information was 0.6 m while for the case 

of Z (height above-ground) the value was 0.20 m.  

LiDAR data of the study area were provided in digital files of 2x2 km 

extension. Point clouds have been captured by LiDAR sensors and 

automatically classified and coloured taking RGB orthophotos as 

reference with a resolution of 25 cm. In our case, the official reference 

geodetic system is REGCAN95 and UTM projection in the 28N zone. 

In the three datasets (one per year), LiDAR data were processed as 

follows: the first echoes of the pulses were used to create the canopy 

height model (CHM) using a 5-m raster cell as calculation unit. The last 

return, echoes classified as ground, were used to create the digital terrain 

model (CHM) raster dataset of the same cell size. The difference between 

CHM and DTM Z coordinate resulted in raster of above-ground 

information, which can be used to estimate forest characteristics (e.g. 

Maltamo et al., 2014). The boundary of each segment was used as a mask 

to compute a long array of LiDAR-derived metrics. As a result, the same 

LiDAR metrics were obtained for the three consecutives datasets. 

Afterwards, the Digital Terrain Model (DTM) was generated with a 

resolution of 1m. Next, taking the generated DTM as the zero Z coordinate, 

the Digital Tree Height Model (DTHM) was obtained with a pixel size of 1 

meter. Then, normalized LiDAR statistics were estimated on a 5x5 m raster, 

which will be used as independent variables in the classification model.  

 

2.3. MULTISPECTRAL IMAGERY DATA SOURCES 

Sentinel-2 is a recent sensor launched on 23 June 2015 by the European 

Space Agency (ESA), which have a global coverage. The promising utility 



of Sentinel in large-scale forest inventory project is related to the fine 

spatial resolution (20-10 m depending on the band) and its short interval 

of time between measurements for a given area (10 days). Particularly, 

Sentinel-2A is characterized by high temporal resolution (10 days) and 

variable spatial resolution, depending on the bands. Blue, green, red and 

near-infrared have 10-m resolution and 20-m in three red bands, one near-

infrared and two more bands in the short-wave infrared. Moreover, three 

additional bands for atmospheric correction are collected at 60-m 

resolution.  

The image for the study area was captured in December 2015. The season 

is optimal for our study given that it has no clouds and the target species 

are evergreen. Consequently, deciduous trees have very low reflectance 

in this image. The Sentinel image, previously orthorectified and 

georeferenced, was provided by the Government of the Canary Islands. 

We used the imagery data to calculate several vegetation indexes 

paralleling preceding studies (Table 1). The indexes aimed to measure 

vegetation photosynthetic activity, leading to predict biomass 

abundance. We included all spectral indices as potential predictors in the 

classification model. 

 

Table 1: Vegetation index estimated as independent variables in the model. 

Index Acronym Equation Reference 
Simple Ratio Index SR B08/B04 Jordan 

(1969) 
Soil Adjusted Vegetation Index SAVI 1.5 * (B08 - B04) / 

(B08+B04+0.5) 
Huete 
(1988) 

Red Edge – Normalized 
Difference Water Index 

RE-NDWI (B03-B05)/(B03+B05) McFeeters  
(1996) 

Red edge – Normalized 
Difference Vegetation Index 

RE-NDVI (B08-B06) / (B08+B06) Gitelson 
and 
Merzlyak 
(1994) 

Pigment Specific Simple Ratio PSSR B08/B04 Blackburn 
(1998b) 

Normalized Difference Water 
Index 

NDWI (B03-B08)/(B03+B08) Gao 
(1996) 

Normalized Difference 
Vegetation Index 

NDVI (B08-B04)/(B08+B04) Rouse et 
al. (1974) 



Normalized Difference 
Vegetation Index 705 

NDVI705 (B06-B05)/(B06+B05) Monori et 
al. 2013 

Normalized Differenced 
Infrared Index 

NDII (B08-B11)/(B08+B11) Hardisky et 
al. (1983) 

Normalized Differenced Index NDI45 (B05-B04)/(B05+B04) Yemefack 
et al. 
(2006) 

Normalized Differenced built-
up Index 

NDBI (B11-B08)/(B11+B08) Zha et al. 
(2003) 

Normalized Burn Ratio NBR (B08-B12) / (B08+B12) Roy et al. 
(2006) 

Moisture stress index MSI B11/B08 Rock and 
Vogelman
n (1985) 

Modified Normalized 
Differenced Water Index 

MNDWI (B03-B11)/(B03+B11) Han-Qiu 
(2005) 

Green-red Vegetation Index GRVI (B03-B04)/(B03+B04) Motohka 
et al. 
(2010) 

Green Normalized Difference 
Vegetation Index 

GNDVI (B08-B03)/(B08+B03) Gitelson et 
al. (1996) 

Enhanced Vegetation Index EVI 2.5*(B08 - B04) / (B08 
+ 6*B04 - 7.5*B02 + 1) 

Liu and 
Huete 
(1995) 

Modified Soil Adjusted 
Vegetation Index 2 

MSAVI2 (B08 + 1) - 0.5 * sqrt((2 
* B08 - 1) ^ 2 + 8 * 
B04)) 

Laosuwan 
and 
Uttaruk 
(2014) 

 

2.4. SEGMENTATION PROCESS 

To define object segmentation in the study area, we executed an OBIA 

(Object Based Image Analysis) which created an image-object through 

the aggregation of pixels by image segmentation (vectorization of image 

data). It is a basic process to generate homogeneous objects based on a 

segmentation algorithm called meanshift from the open access software 

Orfeo Tool Box (OTB) (OTB Development Team, 2017). The two parameters 

which we worked with are: (i) the spatial resolution and (ii) range domains, 

which is the allowable spectral range within each segment for each band. 

 

2.5. DATA ANALYSIS 

Mean annual height increment (dependent variable) was calculated as 

the difference between the DTHM in 2012 and 2009, divided by three. 



DTHM in 2014 has been initially discarded owing to the high proportion of 

nodata values. The mean annual height growth of each segment was 

classified in one of 5 increment categories (very low, low, medium, high 

and very high), based on the standard deviation and the interquartile 

range of the dependent variable. Break points are settled at mean+1, +2, 

-1 and -2 standard deviations or, in the case of the interquartile range, in 

such a way that every class has the same number of segments. 

A classification model was built using randomForest package in R statistic 

software (Liaw and Wiener 2002) to predict the height increment class of 

the whole study area. As one objective of this work is to build a model to 

predict mean annual height increment using vegetation indicators 

derived from satellite information when no field data is available, the 

training dataset consisted of a small sample (26.33%) randomly selected 

from the objects. Thus, the model would be of use when only one LiDAR 

flight is available, combined with satellite data. 

As a consequence of the notable number of candidate variables in the 

classification model, a previous step was necessary, drawing up a shortlist 

in order to remove the variables with redundant information. VSURF 

package (Genuer et al., 2016) was used to select variables that maximize 

the accuracy of the classification model. 

 

3. RESULTS 
 

3.1. HEIGHT GROWTH MAPS 

Firstly, height growth maps were created as the difference between the 

three digital tree height models divided by the number of years in each 

temporal horizon. Figure 2 shows height vegetation and height growth for 

the three temporal horizons.   

 



 
Figure 2: Height and height growth vegetation 
 

 

3.2. SEGMENTATION  

The result of the segmentation process was a shapefile with the study area 

segmented by homogeneous objects (figure 3). 

 

 
Figure 3: Segmentation area 

 
3.3. RANDOM FOREST  



Classification results based on global error of the model (OOB-error) is 

showed in the next table. Omission and commission errors estimated by 

the model were referred to percentage of cases. Table 2 shows that the 

OOB-error obtained by standard deviation classes is 29.39%, omission error 

was 53.11%, and commission error was 50.68%. Figure 4 show the variables 

selected by the model. 

Table 2: Confusion matrix by Standard deviation classification. 

 1 2 3 4 5 Class.error 
1 4315 692 42 11 29 0.1520927 
2 923 1817 177 36 36 0.3921044 
3 87 299 114 28 34 0.7971530 
4 31 67 42 7 30 0.9604520 
5 40 78 25 19 296 0.3537118 

 

 
Figure 4: Variables selected by the model with Standard desviation classify. 

 

Table 3 shows that the OOB-error obtained by Interquartile classify is 

54.95%, omission error was 54.94%, and commission error was 55.18%. 

Figure 5 show the variables selected by the model. 

Table 3: Confusion matrix by Interquartile classification. 

 1 2 3 4 5 Class.error 
1 1087 704 321 126 82 0.5314655 
2 709 788 543 180 92 0.6591696 
3 355 513 801 485 185 0.6575460 
4 137 163 488 1017 518 0.5622040 



5 75 83 157 466 1539 0.3366379 
 

 

 

Figure 5: Variables selected by the model with Interquartile classify. 
 

 

4.  DISCUSSION 
 

The main conclusion addressed through this report is the accomplishment 
of the STSM, since a classification tool based on growth has been 
developed. Nevertheless, the work done showed the evidence that 
further research must be carried out in order to obtain more robust models 
and, subsequently, enhance the classification of laurisilva coppice forests. 

Some issues that may help lead to better performance of the models were 
found during the work. First of all, there was no field data that could 
support the classification with ‘training areas’. Having field data would 
probably be transformed in more accurate models. 

Secondly, only one of the spectral variables is included in the model 
(NDVI705). On one hand, this index capitalizes on the sensitivity of the 



vegetation red edge to slight changes in canopy foliage content, gap 
fraction, and senescence. On the other hand, we can hypothesize that 
the studied laurisilva coppice forests do not present enough spectral 
variability and, consequently, most of these variables do not provide 
significant information to the classification. 

Classification of laurisilva coppice seems likely to be importantly driven by 
climatic variables. Availability of better resolution climatic variables could 
help with the results, particularly in rugged landscapes like the study area. 

Finally, we conjecture that a simpler classification (e.g. 3 categories) of 
the mean annual height increment would lead to a better performance 
of the model. In fact, productivity is not usually a key management 
parameter in this type of ecosystems, hence a less accurate prediction of 
the variable would not jeopardize the usefulness of the results.  

Thus, the future trends for this study may be based on field surveys as 
training samples and probably, the expansion of the study area with the 
aim of obtaining a wider variability of the forests. 
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