The impact of mechanized cutting on coppice mortality, re-sprouting vigor and physiology

N. Magagnotti, L. Pari, R. Spinelli G. Aminti, A. Giovannelli

Session 82 a/b - IUFRO 125th Anniversary Congress, Freiburg, Germany Traditional coppice: ecology, silviculture & socio-economic aspects Tuesday Sept. 19th, 2017

Introduction

- Coppice management to be modernized
- Modern industrial business
- Mechanization
 - Multiple stems on the same stump
 - Prevent stump damage
 - Re-sprouting vigor
 - Safety
 - Right technology & skilled operator

Goals

• To determine *if* mechanized cutting can effect the mortality and re-sprouting of coppiced stumps.

• To gauge the magnitude of these effects

• To analyze the effect of mechanized cutting on the carbon and nitrogen reserves of the stumps

- Central Italy
- Oak dominated coppice stand (20y old)
 - Turkey oak 36%
 - Field maple 24%
 - Narrow-leaf ash 16%
 - Downy oak 7%
 - Manna ash 4%
 - Mock privet, cornelian cherry
- Slope gradient 20%
- DBH: 15 cm (5-30 cm)
- Clearcut with reserve (100 standards/ha)
- Harvest 150 fresh t/ha (including tops and branches)

1 S	2 D	3 C	4 S	5 C	6 D	7 D	8 C	9 S	10 S	11 C	12 D	13 S	14 D	15 C	
							CHARME I								

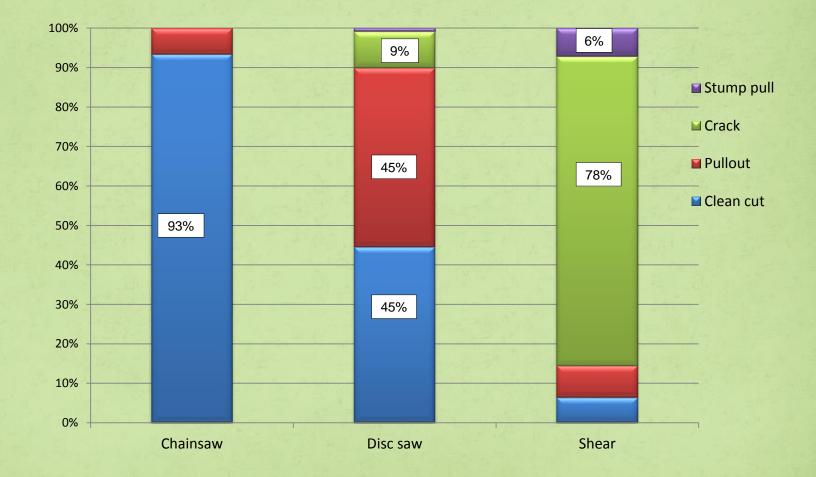
- Individual stump=observational unit
- Btw 13-34 stumps per each subplot
- After cutting: stump characteristic & cut quality
 - Clean cut
 - Pullout
 - Crack
 - Stump pull

• Re-sprouting:

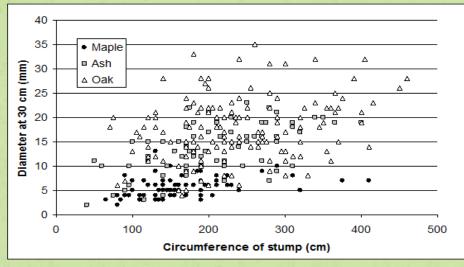
- No shoots taller than 30 cm
- 5 tallest shoots: diameter, height, insertion
- browsing

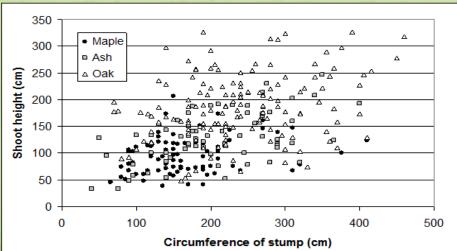
• C/N ratio & sugar type (5 stumps/subplot)

- 4 times phenological phase: after felling, exponential growth, offset, dormancy
- 5 cm long helical core



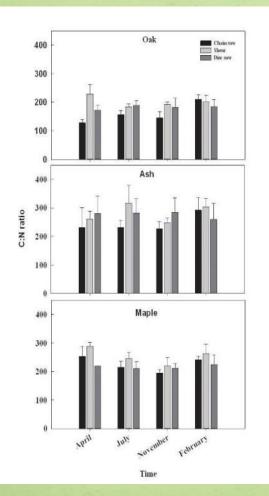
	Mean	SD	Min	Max				
Maximum height (cm)								
Chainsaw	9.4 ^a	3.9	2	27				
Disc saw	10.4 ^a	6.2 0		33				
Shear	15.2 ^b	7.1 3		40				
Minimum height (cm)								
Chainsaw	4.2 ^a	2.0	0	10				
Disc saw	4.9 ^a	4.3	0	29				
Shear	7.8 ^b	4.6	1	24				
Circumference at cut level (cm)								
Chainsaw	210 ^a	75	70	410				
Disc saw	213 ^a	88	65	415				
Shear	207 ^a	86	40	460				

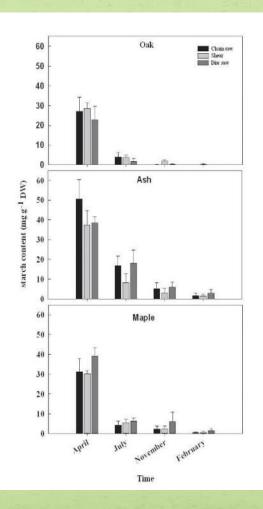


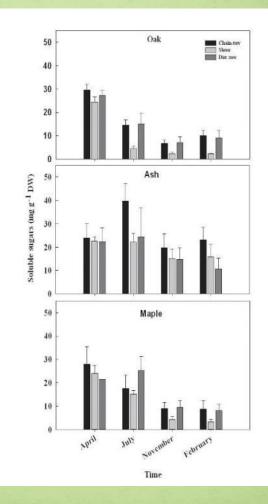

Stumps

• Re-sprouting vigor - species

	Oak		Maple	M. Stanger	Ash	I same the	
	Mean	SD	Mean	SD	Mean	SD	
Number of shoots							
Chainsaw	13.7 ^a	7.7	37.5 ^a	19.6	18.0 ^{ab}	12.6	
Disc saw	15.8 ^{ab}	9.4	23.4 ^b	19.3	13.1 ^a	8.2	
Shear	18.7 ^b	10.3	28.6 ^{ab}	15.8	25.6 ^b	21.3	
Mean shoot diameter at 30 cm from the ground (mm)							
Chainsaw	17.6	6.7	6.3	1.9	12.4	5.7	
Disc saw	17.3	6.2	5.3	1.9	13.9	4.8	
Shear	18.0	6.1	6.1	2.1	14.0	5.5	
Mean shoot height (cm)							
Chainsaw	184	63	101	27	114	44	
Disc saw	180	59	83	34	136	48	
Shear	197	63	100	36	136	46	


ResultsRe-sprouting vigor (size of stumps)





• % distribution of different shoot types

	Adventitious	Basal	Root					
		shoots	suckers					
All treatments together – by species								
Species - χ^2 = 10.491; p-Value = 0.033								
Oak	11.0	80.9	8.0					
Maple	12.3	82.9	4.8					
Ash	16.0	78.7	5.2					
Oak only – by treatment								
Treatments - χ^2 = 17.008; p-Value = 0.002								
Chainsaw	16.8	73.5	9.7					
Disc	9.5	82.1	8.4					
Shear	6.5	88.1	5.5					
Maple only – by treatment								
Treatments - $\chi^2 = 9.571$; p-Value = 0.048								
Chainsaw	17.8	74.8	7.4					
Disc	9.4	87.7	2.8					
Shear	9.7	86.3	4.0					
Ash only – by treatment								
Treatments - χ^2 = 31.671; p-Value = 0.000								
Chainsaw	23.7	69.1	7.2					
Disc	23.3	69.8	7.0					
Shear	3.6	94.2	2.2					

Conclusions

- Limited mortality: 4-8%
- Dominant shoots: exceeded 1,5 m
- Cutting technology:
 - Effect on cutting height & damage
 - No effect on mortality, re-sprouting vigor, nutrient balance
- Regeneration vigor: species
- Largest shoots: oaks

To be continued in the following years

COST Action FP1301 EuroCoppice

Innovative management and multifunctional utilisation of traditional coppice forests – an answer to future ecological, economic and social challenges in the European forestry sector

... Thank you!

Corresponding author contact information:

magagnotti@ivalsa.cnr.it

www.eurocoppice.uni-freiburg.de

Session 82 a/b - IUFRO 125th Anniversary Congress, Freiburg, Germany 15:00 – 19:30, Tuesday Sept. 19th, 2017

COST is supported by the EU Framework Programme Horizon 2020

EVA MAYR-STIHL