

Coppicing restoration in two contrasting land use situations: effects on biodiversity of vascular plants (and invertebrates)

Radim Hédl, Markéta Chudomelová, Ondrej Košulic & Jan Šipoš

Institute of Botany of the ASCR, v. v. i. Zámek 1, CZ - 252 43 Průhonice, Czech Republic www.ibot.cas.cz

New Phytologist – Two Tansley Reviews on temperate forests

Author for correspondence: Oliver Rackham Tel: +44 1223 360144 Email: or10001@cam.ac.uk

Received: 22 April 2008 Accepted: 5 June 2008

Tansley review

Ancient woodlands: modern threats

Review

Oliver Rackham

Corpus Christi College and Department of Plant Sciences, University of Cambridge, Cambridge, UK

Contents

	Summary	571	IX.	Invasive species	577
L.	Introduction	572	Х.	Infilling of savanna	578
П.	What is meant by threats?	573	XI.	Climate change	578
Ш.	Destruction and fragmentation	573	XII.	Globalization of plant diseases	580
IV.	Depletion	574	XIII.	Interactions	581
V.	Pollution and eutrophication	574	XIV.	Importance of different threats	581
VI.	Fire and lack of fire	575	XV.	Conclusions	582
VII.	Excessive shade	575		Acknowledgements	583
VIII.	Excessive numbers of deer and other ungulates	576		References	583

New Phytologist – Two Tansley Reviews on temperate forests

Author for correspondence: Frank S. Gilliam Tel: +1 304 696 3636 Email: gilliam@marshall.edu

Received: 1 June 2016 Accepted: 21 August 2016

Tansley review

Forest ecosystems of temperate climatic regions: from ancient use to climate change

Revie

Frank S. Gilliam

Department of Biological Sciences, Marshall University, Huntington, WV 25705-2510, USA

Contents

	Summary	1	IV.	Climate change	8
l.	Introduction	1	ν,	Epilogue	12
11.	A brief biogeography and history of temperate forests	4		Acknowledgements	14
111,	Climate, soils, composition and land use	5		References	14

New Phytologist – Two Tansley Reviews on temperate forests

New Phytologist

Author for correspondence: Frank S. Gilliam Tel: +1 304 696 3636 Email: gilliam@marshall.edu

Received: 1 June 2016 Accepted: 21 August 2016 Tansley review

Forest ecosystems of temperate climatic regions: from ancient use to climate change

Frank S. Gilliam

Department of Biological Sciences, Marshall University, Huntington, WV 25705-2510, USA

1. Land use / management

- 2. Climate change
 - nitrogen excess
 - altered phenology
 - drought / fire

8 12 14

14

Revie

Effects of the past land use

Dupouey et al. 2002 Ecology

NE France

FIG. 1. Map of the site with indications of former land use intensity according to archaeological investigations.

Effects of the past land use

Dupouey et al. 2002 Ecology

FIG. 3. Position along the first axis of a factorial correspondence analysis of vegetation data vs. soil phosphorus content.

Effects of the past land use

Moravia, Czech Republic 22,349 km²

coppicing intensity

(modelled probability) Late Middle Ages

Szabó et al., 2015 J Hist Geography

potential natural vegetation

Oak-hornbeam forest Acidophilous beechwoods Eutrophic beechwoods Spruce forest

Coppicing, 19th century

Moravia+Silesia (E-Czech Rep.) 28,000 km²

Source: historical forest database, www.longwood.cz

Settlement and land use pattern

Banat, SE-Romania

Present-day pattern of coppicing vs. high forest

Volařík et al. 2017 Folia Geobotanica S.I. Coppicing

Fig. 1 a – Location of the study area. b – Location of research plots within woody vegetation in the study area. Classification of research plots into structural woody vegetation types is shown using different symbols.

Coppicing

Short-rotation forest management system utilizing natural resprouting ability of (deciduous) tree species

Coppicing in European forests

- coppicing was extremely important in the past
- highly effective systems run for centuries
- abandoned in 19-20th centuries in many countries (UK, Germany, Czechoslovakia)
- coppicing abandonment had negative effects on biodiversity
- current efforts for coppicing restoration (IUFRO, EU, national level)

Main venues of coppicing research in ecology

- 1. Long-term legacy of coppicing at the landscape scale
- 2. Consequences of coppicing abandonment in the 20th century
- 3. Effects of coppicing restoration

Herbaceous understory 9 species

Herbaceous understory 4 species (1 invasive) ** Yo

Forest herbaceous vegetation

- all non-woody vascular plant species
- technically all vascular plants lower than 1-1.3 m
- present in boreal, temperate and tropical forests
- 1. Plant community diversity concentrates here.
- 2. Impact on regeneration of woody species.
- 3. High rate of nutrient cycling.
- 4. Reflects habitat history (landscape and local levels).
- 5. Sensitive indicator of environmental changes.

Gilliam F.S. (2007) BioScience

Abandoned coppice, Děvín, SE Czech Republic Age ~40 years

Increasing forest age in the past two centuries forestry maps, Děvín, ca. 380 ha

J. Müllerová et al. / Forest Ecology and Management 331 (2014) 104–115

Fig. 6. Aging of Děvín Wood throughout 200 years.

Müllerová, Szabó, Hédl 2014 Forest Ecol Manag

Coppicing restoration – ancient forest 2008-2016 Děvín, ca. 380 ha

Coppicing restoration – ancient forest 2008-2016 Děvín

Three types of coppice restoration intensity 135 plots in a nested design, plot size 3.15 m^2

1m-

Coppicing restoration – ancient forest 2008-2016 Děvín

Three types of coppice restoration intensity 135 plots in a nested design, plot size 3.15 m²

1m-

Intense

Moderate

Coppicing restoration – ancient forest 2008-2010 Děvín

• Functional diversity of both vascular plants and spiders is positively correlated with coppicing restoration

• CCA with compositional patterns and functional diversity

Šipoš et al. 2017 Folia Geobotanica S.I. Coppicing

Coppicing restoration – secondary forest 2012-2015 Utinek's Grove

Three types of coppice restoration intensity 48 plots in a nested design, plot size 3.15 m^2

1m-

Hédl et al. 2017 Folia Geobotanica S.I. Coppicing

Coppicing restoration – secondary forest 2012-2015 Utinek's Grove

Three types of coppice restoration intensity 48 plots in a nested design, plot size 3.15 m^2

1m-

Hédl et al. 2017 Folia Geobotanica S.I. Coppicing

Coppicing restoration – secondary forest

2012-2015 Utinek's Grove

Three types of coppice restoration intensity 48 plots in a nested design, plot size 3.15 m^2

(weeds)

Long-lived (perennials)

1m-

Conclusions

Land use history and management intensity DO matter, when considering coppicing restoration for biodiversity.

- They have an effect on:
- Biodiversity and compositional patterns at various scales
- Functional patterns at species and community levels
- Occurrence of habitat types (cf. dominant tree species)

COST Action FP1301 EuroCoppice

Innovative management and multifunctional utilisation of traditional coppice forests – an answer to future ecological, economic and social challenges in the European forestry sector

... Thank you!

Corresponding author contact information:

Radim Hédl Institute of Botany The Czech Academy of Sciences Brno, Czech Republic radim.hedl@ibot.cas.cz

www.eurocoppice.uni-freiburg.de

Session 82 a/b - IUFRO 125th Anniversary Congress, Freiburg, Germany 15:00 – 19:30, Tuesday Sept. 19th, 2017

COST is supported by the EU Framework Programme Horizon 2020

