INTRODUCTION OF Entomophaga maimaiga IN THE GYPSY MOTH POPULATIONS

IN SOME COPPICE BEECH FORESTS IN CENTRAL SERBIA

Mara Tabaković-Tošić

INTRODUCTIONT

The gypsy moth (Lymantria dispar L., Lepidoptera: Erebidae) is the most dangerous defoliating pest in Serbia. During the outbreak in Central Serbia, gypsy moth frequently spread in the broadleaf forests which cover an area of several hundred thousand hectares. It is strongly polyphagous. In Eurasia, it is able to consume foliage of around 500 species of trees and shrubs.

RESULTATES AND DISCUSION

In the coppice beech forests of the studied area, the collapse of the outbreak of the gypsy moths was caused by the introduced entomopathogenic fungus of the gypsy moth *E. maimaiga*. In the studied area of Kruševac region the clear and characteristic symtoms of the fungal diseases were at 89-100% of the reported dead gypsy moth larvae.

Plot	Gypsy moth dead caterpillars						
		With <i>Entomophaga maimaiga</i>					
	Sample size	conidiospores		azygospores		conidiospores and azygospores	
	Ν	N	%	N	%	N	%
1	25 + 25+ 25 + 25	3	3	63	63	34	34
2	25 + 25+ 25 + 25	1	1	79	79	20	20
3	25 + 25+ 25 + 25	-	-	96	96	2	2
4	25 + 25+ 25 + 25	2	2	87	87	7	7
5	25 + 25+ 25 + 25	-	-	100	100	-	-
6	25 + 25+ 25 + 25	1	1	87	87	11	11
7	25 + 25+ 25 + 25	-	-	86	86	3	3
8	25 + 25+ 25 + 25	-	-	100	100	-	-
10	25 + 25+ 25 + 25	-	-	81	81	18	18
11	25 + 25+ 25 + 25	-	-	100	100	-	-
12	25 + 25+ 25 + 25	3	3	85	85	10	10
13	25 + 25+ 25 + 25	-	-	93	93	2	2
14	25 + 25+ 25 + 25	1	1	96	96	2	2
15	25 + 25+ 25 + 25	-	-	100	100	-	-
16	25 + 25+ 25 + 25	5	5	77	77	17	17
17	25 + 25+ 25 + 25	-	-	98	98	2	2
18	25 + 25+ 25 + 25	-	-	57	57	41	41
19	25 + 25+ 25 + 25	2	2	78	78	10	10

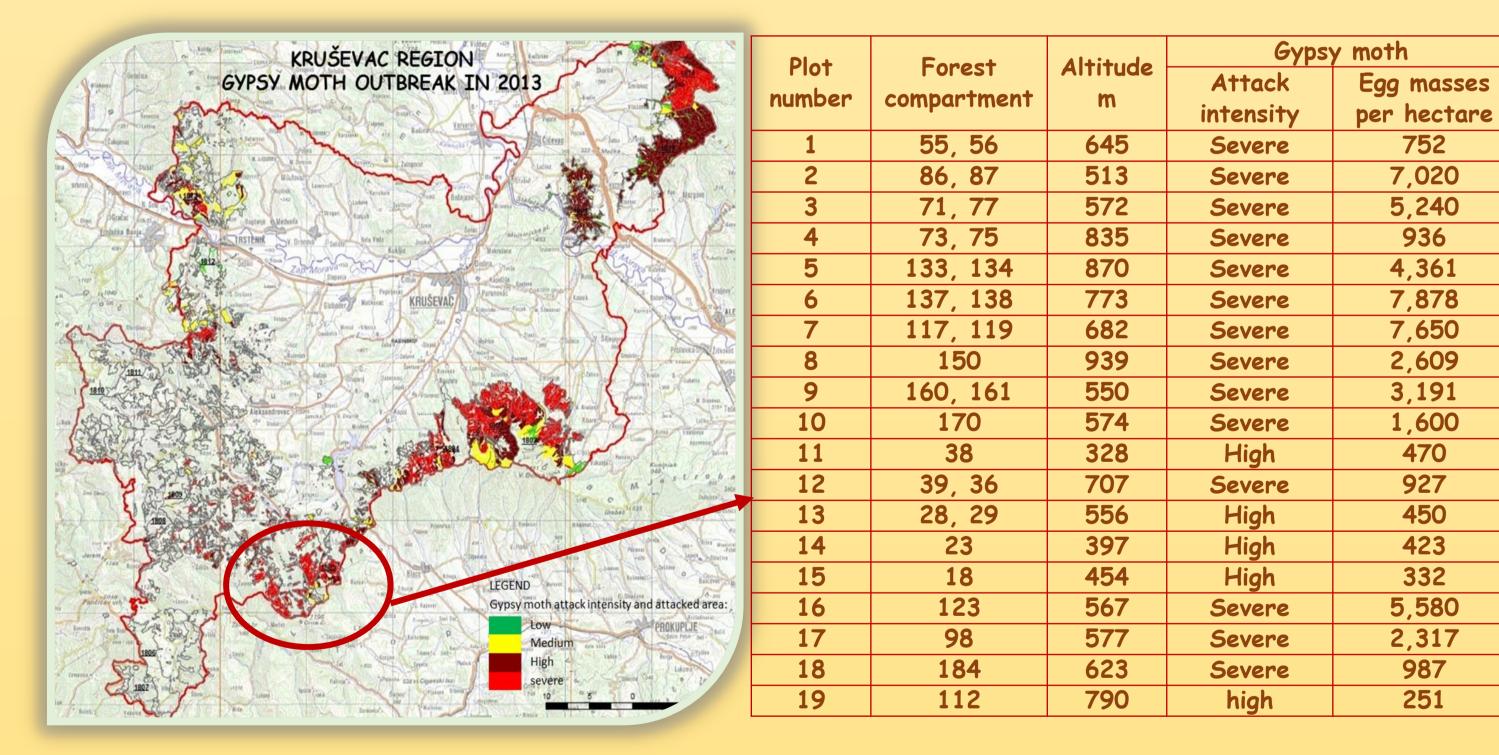
Institute of Forestry Belgrade, Serbia

Naturally occuring enthomopathogens are important regulatory factors in insect population. Entomopathogenic organisms, various types of viruses, microsporidia, bacteria, protozoa, fungi, nematodes, which can under the favourable conditions cause the massive insect mortality and are of great breeding capacity, normally live in nature. Epizootics caused by naturally occurring viral and fungal pathogens are often responsible for spectacular crashes of insect pest populations.

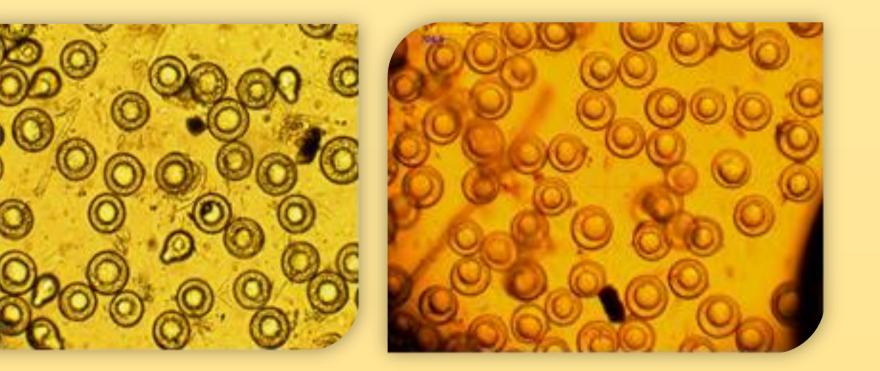
Entomophaga maimaiga Hamber, Shimauzu & Soper (Entomophtorales: Entomophtoraceae) is not native entomopathogenic fungus in Europe. In 1999, it was introduced for the first time in Bulgaria. Recent data suggest that *E.* maimaiga is getting spread in Europe. Since 2011 the fungus has been found in several other European countries. First time this fungus was reported from the European part of Turkey in 2011 and in the same year it was also found in Serbia.

The artificial spread of pathogens, as part of biological control, is recommended where natural spread will be insufficient, because of shortage of time or because the density of host population is too low to allow satisfactory natural spread. Obviously, this method has advantages because only small amounts of the pathogen and inexpensive equipment for field application are needed.

MATERIALS AND METHODS


The research was conducted in the coppice beech forests located in Kruševac region – (Public Enterprise Srbijašume, Forest Estate Rasina, Forest Administration Brus, Management Unit Žunjačko-Batotske planine).

The population density of L. dispar was determined by using route measurement


at the beginning of autumn of 2013. Using this method, it was determined that the average density of gypsy moth egg masses was 250-8,000 per hectare.

In early December 2013 at 19 selected plots the assisted spread of it was performed, through the introduction of the infectious inoculum in the coppice beech forests. The introduction of E. maimaiga was carried out in one spot of the stand with approximate area 100 sq. m. Under the conditions of the global warming and great drought, the special recipe for the preparation of inoculum was made (40 dead caterpillars mixed with soil and superabsorbent polymers) and introduced around the base of 5 trees. L. dispar cadavers containing E. maimaiga azygospores were collected in the same regions of Central Serbia, where strong epizootics was determined in the spring of 2013.

By the microscopic analysis of the dead caterpillars the presence of a higher number of conidiospores (in younger larval instars) and azygospores (dominant in the older larval instars of gypsy moths) was clearly determined.

Conidiospores and azygospores isolated from dead gypsy moth larvae

In September 2014, as well as in the previous years, the number of the newly laid gypsy moth egg masses was determined. During the examination were not found laying new egg masses. The situation is the same in the whole forests area, which is the result of the applied method of suppression by artificial spreading of pathogen *E. maimaiga*, as a part of integrated pest management

The evaluation of *E. maimaiga* infections was recorded as positive when azygospores and conidiospores were detected in the cadavers of dead gypsy moth larvae. The species identification was based on the size, shape and structural characteristics of different life forms of the fungus – azygospores, conidiospores and mycelia. The success of the introduction was evaluated in spring and summer 2014.

Summer 2014-Defoliation 0%

ACKNOWLEDGMENTS

The study was partly financed by the Minstry of Science of the Republic of Serbia, the Project 31070 - SUBPROJECT: New technological methods in the integral protection of forests with the focus on the entomopathogenic fungus *Entomophaga maimaiga*, as the possible solution to the problem of the frequent occurrences of the outbreak of gypsy moth in the forest ecosystems of Serbia.