Profitability of short-rotation biomass production on downy birch stands on cut-away peatlands in northern Finland

Paula Jylhä Jyrki Hytönen & Anssi Ahtikoski

Natural Resources Institute Finland (Luke)

© Luonnonvarakeskus

Content

- I Background
- II Profitability of intensive production of downy birch
- III Preliminary results of harvesting experiment
- IV Conclusions

I Background

- Annually ca. 2500 ha of peat production area is released to after-use
- The need for increasing the use of renewable energy up to 38% by 2020
- Increasing wood consumption by the forest industry → competition for wood between forest and enery industries

Energy consumption in 2013

Forest chip potential in Finland

The effect of new investments?

(Anttila et al. 2014)

Regional forest chip potentials / maximum allowable cut

There is need for intensifying wood biomass production....

- Domestic forest chip supply is sufficient for reaching the target for the use of renewable energy, if
 - Cuttings of sawlogs is increased
 - Pulpwood is used in energy generation in areas with low industrial demand
 - Wood production is intensified and/or
 - Procurement logistics is developed

(Anttila ym. 2014)

Il Profitability of intensive production of downy birch on cutaway peatlands

Case Hirvineva

- Profitability calculations for six mixed downy birch stands, aged 15 26 years
- Mounding or ash fertilisation after cessation of peat production
- Two intensity levels: natural afforestation or broadcast seeding (seeding was assumed to shorten the first rotation by one year)
- Clear-cut of the first tree generation at the age of 15–26 years
- Regeneration of two subsequent generations by coppicing, thereafter mounding and broadcast seeding
- Equal biomass production in all rotations, but coppicing and seeding shorten rotations by one year compared to the 1st generation

Stand data

Stand no.	Stand age, years	Trees ha ⁻¹	Mean DBH, cm		Mean height, m		Whole-tree recovery		
			Arithm.	Basal-w.	Arithm.	Basal-w.	kg ha ^{-1 3)}	m ³ ha ⁻¹	MWh ha ⁻¹
1	15	50,567	2.1	3.5	3.8	5.1	41,663	90	208
2	16	42,500	2.1	5.1	3.6	6.3	49,129	105	246
3	23	13,667	4.1	7.4	7.2	10.0	65,354	139	327
4	23	15,333	3.8	6.6	6.2	9.0	59,989	134	300
5	24	12,167	4.5	8.0	6.9	10.2	73,584	155	368
6	26	10,475	5.0	7.8	8.2	10.8	74,840	158	374

Stem diameter distribution

- Stand density 10 000–51 000 trees per ha ($h \ge 1.3$ m)
- Whole-tree recovery 90–158 m³/ha (42–75 t/ha)

Recovery

The cost of forest chip production

- Recoveries were calculated with biomass models, harvesting losses were ignored
- Cutting by a feller-buncher
 - Time consumption was calucated using the model of Fernandez-Lacruzin et al. (2013)
 - Hourly cost of a new medium-sized harvester
- Forwarding with a new middle-sized forwarder equipped with a grapple saw
 - Time consumption was based on the modified model of Kärhä et al. (2006) for thinnings
- Roadside chipping and chip transportation to the end-use facility located 60 km from the stands
- No subsidies

Costs and revenues

	€/ha										
	Stand 1	Stand 2	Stand 3	Stand 4	Stand 5	Stand 6					
Costs											
Ash fertilisation	310	310	310	310	310	310					
Mounding	310	310	310	310	310	310					
Broadcast seeding	195	195	195	195	195	195					
Cutting	2 277	2 006	1 411	1 498	1 546	1 453					
Forwarding	760	665	753	740	826	845					
Chipping	422	490	648	627	725	738					
Chip transportation	678	787	1 040	1 007	1 164	1 185					
Overheads	252	293	387	375	433	441					
Revenues											
Sales of forest chips	4 377	5 164	6 867	6 294	7 734	7 864					

Unit costs of forest chip production

Profitability of bionmass production/ bare land value (BLV)

Bare land value (or soil expectation value) is the present value of all future costs and revenues of a productive asset. It is the value of bare land.

Unit price of energy wood, BLV = 0

Production of energy biomass is profitable, if the prices in the graph above are lower than expected price of forest chips (in this study ca. 21 €/MWh). Production is unprofitable, is the price is higher than expected sales price.

© Luonnonvarakeskus

Sensitivity analysis / 1 st rotation

The "stumpage prices" above are discounted surplus (profit), the allcocation of with among stakeholders is not defined. This concept of stumpage price is not analogous to "normal" stumpage price!

In the first half of 2014 mean stumpage price of whole-tree energy wood was 1.7 €/MWh, and majority of wood was subsided by 7 €/m³. In the present study residual value at stump was 7.5–17.1 €/MWh (without subsidies!). In stands older than 20 years residual values were at the same level with pulpwood (Metla)

III Preliminary results of harvesting experiment

18 Paula Jylhä

Productivity of cutting

14.4.2015

LUONNONVARAKESKUS

Problems associated with operating on cutaway peat bogs

IV Conclusions

- Intensive biomass production with downy birch on cutaway peat production is profitable when rotation exceeds ~ 20 years
- Shortening of rotation by one year did not balance the cost of broadcast seeding at stand establishment phase
- Limitations of the tested harvesting method
 - Seasoning of unbarked birch?
 - Harvesting on unfrozen soil?
 - The feller-buncher is not ideal for integrated harvesting of pulpwood and energy wood, as well as for harvesting delimbed energy wood
- Cutaway peatlands have high production potential
 - Profitability of energy biomass production should be compared to other production alternatives
- An option to produce industrial roundwood

