

Action FP 1301 EuroCoppice

ECOLOGY AND SILVICULTURAL MANAGEMENT OF COPPICE FORESTS IN EUROPE 19-21 October 2015 | Bucharest, Romania

Opportunities for coppice management at the landscape level: the Italian experience

	Paola Mairota	University of Bari "Aldo Moro", IT
	Maria Chiara Manetti Emilio Amorini Francesco Pelleri	CREA-Forestry Research Centre, IT
ARBOREA	Marco Terradura, Mauro Frattegiani Paola Savini	Arborea coworking, IT
Regione Umbria	Francesco Grohmann	
	Paolo Mori	Compagnia delle Foreste, IT
ipla	Piergiorgio Terzuolo	IPLA, IT
	Pietro Piussi	formerly University of Florence, IT

Piussi 1979, Amorini and Fabbio 2009, Piussi and Redon 2001

«ancient woodlands»

Coppice woodlands in Italy (INFC 2005)

ltalia Serdogna	_	1					3,66	3,14	3 he	ctars
Sicilia						1	. (5	500.00	00 he	ctars
Calabria						! !]
Basilicata			-				S	weet	ches	tnut)
Puglia										
Campania	•									
Molise	•		•			1				
Abruzzo	•	•	•			1				
Lazio			•							
Marche	•		1	1						
Umbia								1		
Toscana	•	1				1				
milia Romaona			•			,				
Liuuria			•			1		i i		
Friuli V.G.				1						
Veneto		1		1		1 1 1				
Trentino			:	1					i	
Nto /diac			1			1				
Lombardia			i	1						
Vale d'Aosta		:	:			1				
Piemorte	-					1				
0%	5 10	% 20	0% 30	1% 40	% 50	% 60	% 7 0	% 80%	6 901	6 100%

Frequency of N2k forest habitat types

Beech	14.4
Deciduos Quercus sp	19.4
Evergreen Quercus sp	5.5
Hornbeam	11.6
Other sp.	21.9
Coppices with conifers	2.9

Different modes of stump cutting, pollarding and pruning associated with coppice

Historical multifunctional silvo-pastoral systems for animal husbandry and production of timber, firewood, charcoal, NWP

Current management approaches...

Uprooting of beech stools in a coppice under conversion following snow (Urbinati et al ForestPas 2000)

Uprooting of sweet chestnut overstood stool following heavy rain (Bischetti et al Pro.Ce.D.I 2013)

(Bischetti et al Pro.Ce.D.I 2013)

Innovative silvicultural systems for coppice

Selection of standards to be retained can be challenging. This not only includes the number of trees selected to grow to larger sizes than the shoots, but also concerns setting the density and the spatial arrangement as well as the age/size distribution of standards within the stand, guided by informed silvicultural choices.

✓ Group of standards retention

✓ Single tree silviculture

Summacop - Sustainable and multifunctional management of Umbria coppices

LIFE99 ENV/IT/000003

P.Pro.SPO.T. - Policy and Protection of Sporadic tree species in Tuscany forest LIFE09 ENV/IT/000087

New silvicultural system
for sweet chestnut coppices

CHESUD Project (Contract ERBIC 15 CT 98 0149)

ManFor C.BD. - Managing forests for multiple purposes: carbo biodiversity and socio-economic wellbeing

LIFE09 ENV/IT/000078

Summacop - Sustainable and multifunctional management of Umbria coppices

LIFE99 ENV/IT/000003

Group of standards retention

Frattegiani et al 2000 Grohman et al 2002 Savini et al 2015

- ✓ 100 m² ±; 25-30 individuals bounded by the more mechanically stable ones; possibly including sporadic tree species
- ✓ average distance 15-20 m within the coupe (10-15% of coupe extent)
- density and spatial arrangement according to terrain/site and stand conditions

Summacop - Sustainable and multifunctional management of Umbria coppices

LIFE99 ENV/IT/000003

Group of standards retention

Frattegiani et al 2000 Grohman et al 2002 Savini et al 2015

- \checkmark individual tree and stand mechanical stability protection of soil from erosion
- $\checkmark\,$ sufficient light for shoots growth
- ✓ tree species diversity
- ✓ within-coupe heterogeneity (creation of microhabitats)

Google earth

- ✓ more commercially valuable timber
- $\checkmark\,$ easing of timber and firewood extraction
- $\checkmark\,$ aestethics (mitigation of the visual impact of coppicing

P.Pro.SPO.T. - Policy and Protection of Sporadic tree species in Tuscany forest LIFE09 ENV/IT/000087

Single tree silviculture (for sporadic species) in ageing coppices

Pelleri et al 2000 Mori and Pelleri 2014

Main characteristics of the single tree silvicultural models for coppices (Marone et al 2014)

Silvicultural model	Target trees number	Target trees DBH	Sporadic target trees yield	Return period	Coppice rotation period
	n ha ⁻¹	cm	m ³	yrs	yrs
A-Oak coppice	20	48-68	0.9-1.2	8	24
B-Oak coppice	20	48-68	0.9-1.2	6	24
C-Aged oak coppice	60	48-68	0.8-1.9	8	
D-Aged chestnut coppice	96	48-68	0.5-1.1	8	48

- Different combinations of thinning regimes according to different tree species / stand initial conditions (e.g., reaction in terms of growth and competition/stand dynamics)
- Suitable to different woodlands (mixed oak, chestnut and beech) of coppice origin (including aged/converted to high forests stands)

CHESUD Project (Contract ERBIC 15 CT 98 0149)

ManFor C.BD. - Managing forests for multiple purposes: carbon, biodiversity and socio-economic wellbeing

LIFE09 ENV/IT/000078

New silvicultural system for sweet chestnut coppices

Amorini et al 2000 Amorini and Manetti 2002 Fabbio et al 2015

- $\checkmark\,$ Selection and tending of stems
- ✓ Early (starting at 10th year) frequent (every 6-7 years) thinnings from belowmixed/medium-high intensity

10 years Successful in the recovery of neglected woods with overstood stools and in maintaining a balanced dominant cohort, functionally responding to the biological characteristics of this species and coppice dynamics (i.e. shade-intolerant, fast growing, active social organisation, tendency to create even-aged structures)

30 years

⁵⁰ years

Medium rotation		Before thinning		Intensity After th			fter thinnin	er thinning		CAI	
Age yrs	DH m	Ns n ha-¹	BA m² ha-¹	DBH cm	N (%)	BA (%)	Ns n ha-¹	BA m² ha-¹	DBH cm	(%)	m² ha-¹ yr-¹
10	> 10	5500	26.9	7.9	50	35	2750	17.5	9.0		
15	13.5-15.5	2640	27.0	11.4	50	30	1320	18.9	13.5	4.0	1.9
										2.0	1.6
22	16.5-18.0	1294	30.1	17.2	40	30	776	21.1	18.6	1.0	1.4
30	19.0-20.0	786	32.3	23.1						1.0	1.4
Long rotation		Ве	efore thinni	ng	Inte	nsity	Ą	After thinnin	g	Μ	CAI
Age yrs	DH m	Ns n ha- ¹	BA m² ha- ¹	D cm	N (%)	BA (%)	Ns n ha- ¹	BA m² ha-1	D cm	(%)	m² ha-¹ yr-¹
15	> 13	3900	31.5	10.1	50	35	1950	20.5	11.6		
										3.0	1.6
22	16.5-18.0	1892	31.7	14.6	40	27	1135	23.1	16.1	2.0	1 Δ
30	19.0-20.0	1112	34.3	19.8	30	22	779	26.8	20.9	2.0	1.7
								<u></u>	<u></u>	1.5	1.4
37	21.0-22.0	767	35.2	24.2	30	22	537	27.4	25.5	1.0	1.2
44	22.5-23.0	531	35.8	29.3	30	25	372	26.9	30.3		
50	23 5-2 <i>1</i> 0	370	32 9	33 G						0.0	1.0
50	2J.J 24.U	J/U	JL.J	JJ.U							

Main characteristics of the medium and long rotation models for chestnut coppices

Our proposal...

Different options (including spontaneous development and conversion, and the application of innovative silvicultural models also in chestnut coppices) can be combined at the stand and sub-stand levels to:

- ✓ prevent homogeneity
- ✓ add a finer scale heterogeneity to the mosaic of traditional coppice developmental stages
- ✓ increase overall system resilience and scope for (management) adaptation to new conditions

SFM: ecological + economic concerns taken into account

single tree

Broup of standards

conversion to high forest

Requirements...

The combination of different options at the stand and sub-stand level and compliant with the principles of SFM, is challenging and requires:

- Regionally consistent administrative procedures ensuring a logical hierarchy in forest planning (sensu Baskent & Keles 2005) (e.g., those in force in the Regione Umbria, Grohmann 2005)
- ✓ Novel forest management osco Ceduo- 1° quinquennio tagli 09/7 plans (e.g., those devised for Bosco Ceduo- 2° quinquennio CWS in Umbria and Tuscany, Bosco Ceduo- 3° quinquennio Fustaia latifoglie-1° quinquennio Terradura & Consoli 2011. Fustaia latifoglie- 2° guinguennio Fantoni et al. 2012), Fustaia latifoglie-3° guinguennio Altre superfici - 1° quinquennio nessun intervento tagli 07/08 20 Piano dei tagli
- ✓ The existence of specialized and qualified operators at all levels (forestry technicians, workers, controllers) (e.g. vocational courses offered by the Regione Piemonte)
- ✓ The development of scenarios simulating the potential forest dynamics at different levels (cf. Mladenoff and Scheller 2007, Mairota et al 2006)

Concluding remarks

- The proposed approach to coppice management responds to the need to consider the forest landscape as a whole, rather than an aggregation of discrete and disconnected individual forest stands and estates (Kohm & Franklin 1997);
- ✓ Goes in the direction of an ecological aesthetics (Gobster 1999) for forest landscape planning so as to reconciling scenic aesthetic/demands of urbanite communities with those of forest landscape functioning/biodiversity (cf. Hermy & Verheyen 2007) and of rural communities (cf. Ostrom 2009);
- ✓ Is applicable to Narura 2000 sites;
- ✓ Is in line with the so called "Options Forestry" (Bormann & Kiester 2004) strategy, that admits an uncertainty margin in connection with unpredictable changes that affect the system
- ✓ Is compliant with the new Framework Program for the Forestry Sector – Horizon 2020 (CO₂ fixation + SFM) to ensure productive, socio-economic and environmental functions in the future;
- ✓ Represents the bottom up key that allows to respond to the socio-economic and environmental challenges affecting coppice silvicultural system.

DRIVERS CONSTRAINTS

CHALLENGES OPPORTUNITIES

Acknowledgements

Earlier stages of this work have been presented as posters at the COST Action 1301 EuroCoppice Event: People and Coppice, University of Greenwich, Medway, England 5th November, 2014 and at the Conference "Coppice forests: past, present and future", Mendel University in Brno, Czech Republic April 9th-11th, 2015 For the participation in both these events, and in this Conference, P. Mairota has received financial support by

COST Action FP 1301 "EUROCOPPICE"

Innovative management and multifunctional utilization of traditional coppice forests: an answer to future ecological, economic and social challenges in the European forestry sector Working Group 4 - Services, protection, nature conservation

http://www.eurocoppice.uni-freiburg.de/

This work has been submitted to iForest-Biogeosciences and Forestry and is under review