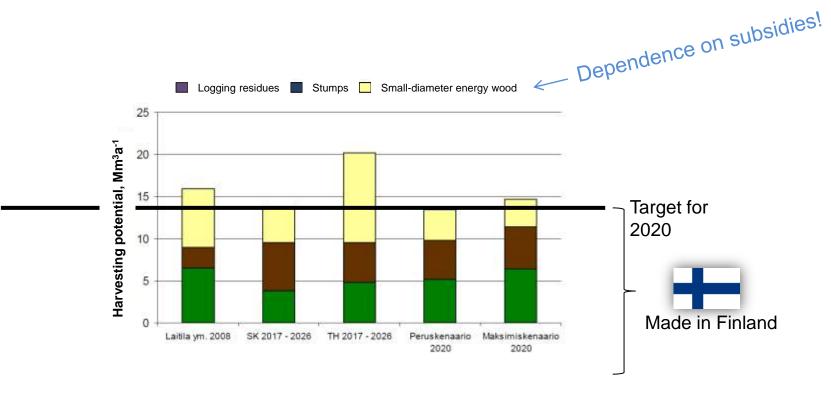
Economy of short-rotation production of downy birch on former peat production areas

Paula Jylhä

Jyrki Hytönen

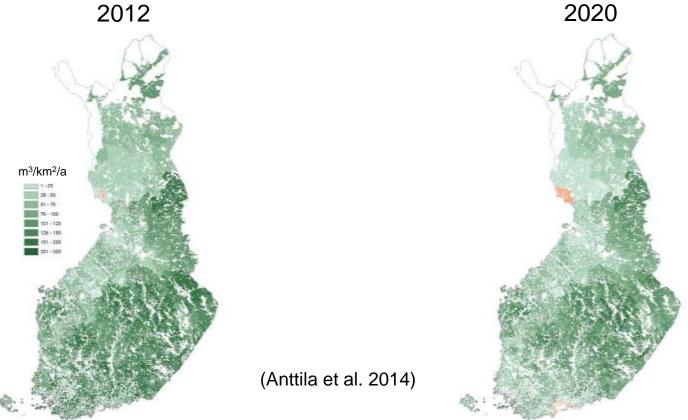
Anssi Ahtikoski


20.11.2015

Content

- I Background II Material and methods III Results
- **IV** Conclusions

I Background



Anttila et al. (2014)

Utilisation of marginal lands?

Forest chip potential

After-use of cutaway peat bogs

Peat production area 60,000 ha, annually release of 2,500 ha to after-use

0125

5

20.11.2015

3 years after establishment

Ash fertilisation and broadcast seeding

Untreated

Annual biomass production of downy birch (Betula pubescens) in naturally afforested peat production areas 3–4 ODt ha⁻¹

Regeneration by sprouting

7

20.11.2015

II Material and methods

$$BLV = \left[R_{s}b^{s} - \sum_{s=0}^{s}c_{s}b^{s}\right] + \left[R_{\kappa}b^{\kappa} - \sum_{k=0}^{\kappa}c_{k}b^{(k+s)}\right] + \left[R_{L}b^{L} - \sum_{l=0}^{L}c_{l}b^{(l+\kappa+s)}\right] + F$$

Bare land value (BLV) as a criterion for profitability

- The present value of all future costs and revenues of a productive asset
- Gives an estimate of the value of the land
- A tool for identifying optimal management regimes
 - Decision about rotation length
 - Establishment input
 - Stand management
- A modified Faustmann rotation model was used
 - Chang, C.J.2014. Forest valuation under the generalized Faustmann formula. Can. J. For. Res. 44(1):56-63

Stand management assumptions

- Calculations for six case stands located on a cutaway peat bog in Northern Finland
 - 15–26-year old when inventoried
 - naturally afforested
- Stand establishment
 - Ash fertilisation or mounding (equal cost)
 - Natural or broadcast seeding
- Clear-cut of the first generation at the age of 15–26 years
- Coppice regeneration twice, soil preparation and broadcast seeding from 4th rotation onwards
- Equal biomass production in all rotations, coppicing and broadcast seeding shorten rotations by one year

qu	Z
	Arctic Circle
Hirvineva	5
a have)

Production of forest chips

- Whole-tree cutting with a new medium-sized harvester equipped with a biomass felling head
 - Productivity based on the the model of Fernandez-Lacruz ym. (2013), extrapolation!
 - Hourly cost parameters from industrial wood harvesting
- Forwarding with a new medium-sized forwarder equipped with a grapple saw
 - Productivity through a modified model of Kärhä et al. (2006) for thinnings
 - Hourly cost parameters from industrial wood harvesting
- Roadside chipping
- Chip transportation to the end-use facility, distance 60 km
- Overheads from the Finnish Forerst Industry
- Sales price of forest chips 21 € MWh⁻¹ (moisture content 40%)
- No subsidies!

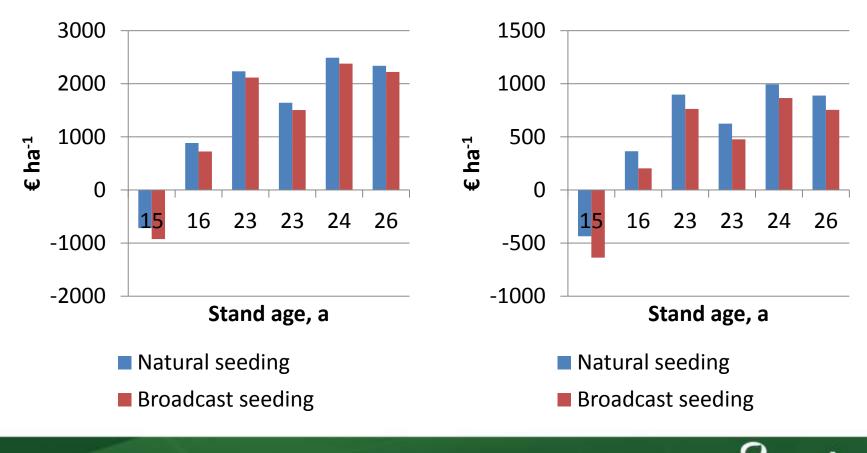
Costs and revenue

		€ ha ⁻¹							
		Stand 1	Stand 2	Stand 3	Stand 4	Stand 5	Stand 6		
		15 years	16 years	23 years	23 years	24 years	26 years		
	Costs								
	Ash fertilisation	310	310	310	310	310	310		
	Mounding	310	310	310	310	310	310		
	Broadcast seeding	195	195	195	195	195	195		
	Cutting	2 277	2 006	1 411	1 498	1 546	1 453		
	Forwarding	760	665	753	740	826	845		
€ MWh ⁻¹ -	Chipping	422	490	648	627	725	738		
	Chip transportation	678	787	1 040	1 007	1 164	1 185		
	Overheads	252	293	387	375	433	441		
	Revenues								
	Sales of forest chips	4 377	5 164	6 867	6 294	7 734	7 864		

20.11.2015

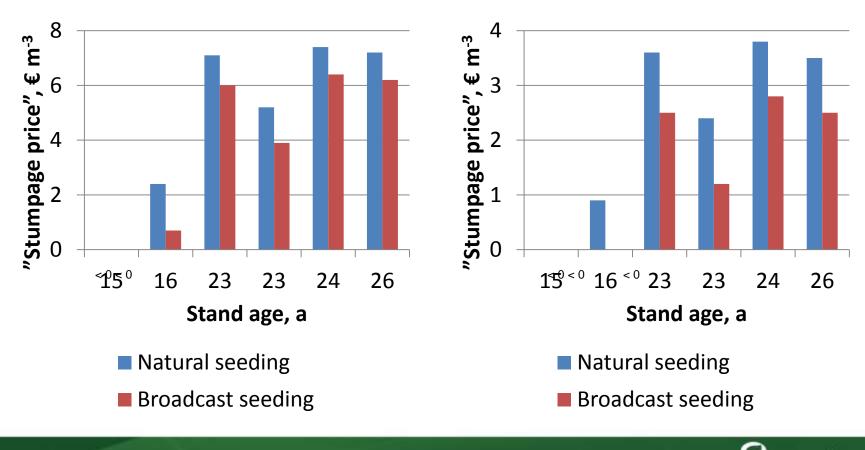
12.4-21.0

III Results



Bare land value

Interest rate 3 %



14

Interest rate 5 %

Sensitivity analysis, 1st rotation

Interest rate 3 %

15

Interest rate 5 %

Composition of removal

IV Conclusions

- Cutaway peatlands have high production potential
 - Biomass production (3–4 ODt ha⁻¹) is at the same level with commercial willow plantations in Sweden
- Profitable when rotation exceeds ~ 20 years
 - Low investments in wood production, early income
 - The BLVs with the longest rotations (23–26 years) correspond to that obtained with planted spruce in a upland site with grass-herb vegetation in southern Finland (interest rate 5%)
 - Optimum rotation is unknown
- A flexible form of biomass production
 - In peatland forests poor thinning response (omitting thinnings does not impact negatively the forest)
 - An option to produce industrial roundwood
 - decision about the timing and method of harvesting can be made based on market situation and price relations of pulpwood and energy biomass
- Uncertainties
 - Continuity of coppicing
 - Stand development with diverging management alternatives

