Biomass equations for sessile oak and hornbeam in aged coppiced forests in southwest Germany

Patrick Pyttel, Christian Suchomel, Jürgen Bauhus and Gero Becker

Chair of Silviculture

Ecology and Silviculturel Managment of Coppice Forests in Europe

Bucharest, Romania 21st October 2015

introduction

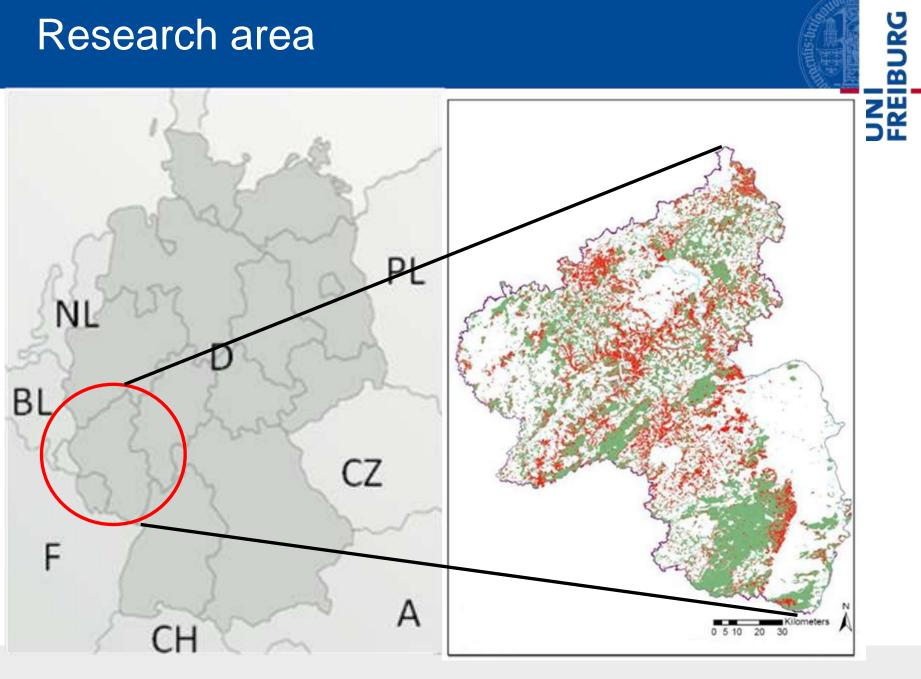
Why bother?

By re-activation of aged coppice forests:

- preserve historical landscape elements
- support biodiversity
- use of "unexploited" timber resources

Biomass available???

Objectives

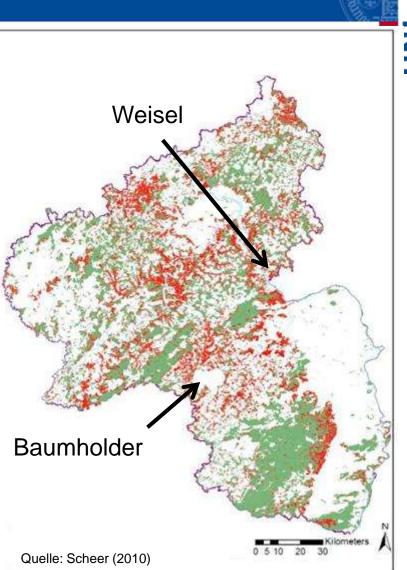

Research issue:

- No information about the amount of biomass stored in aged coppice forets.
- No tools availabel to estaimate biomass ressources.

Objectives:

- Development of biomass equations for oak and hornbeam.
- Development of biomass equations in order to calculate mass of tree compartements.

Research area

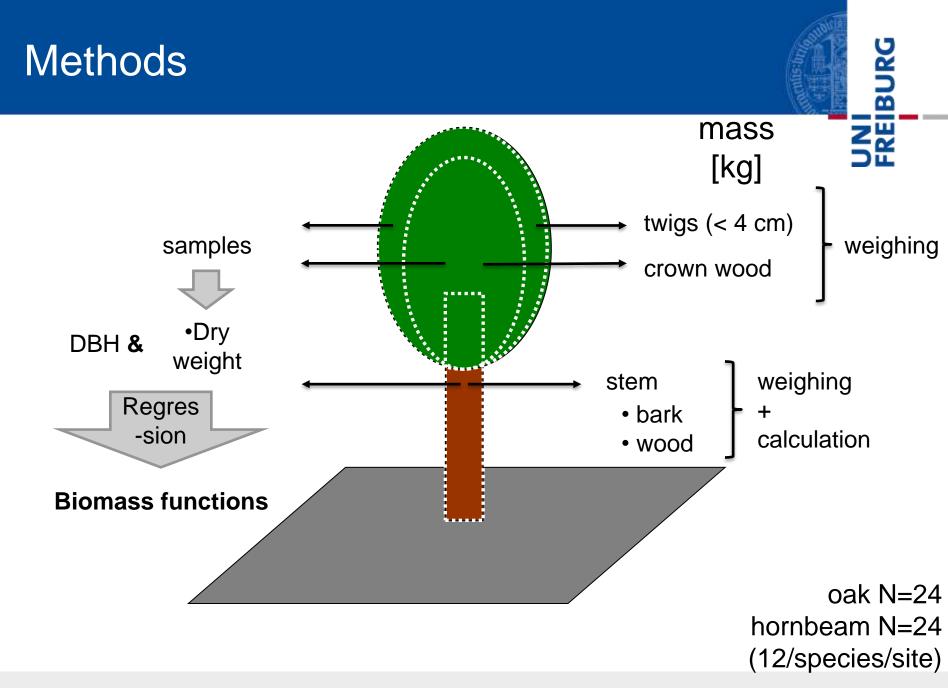


6

Research area

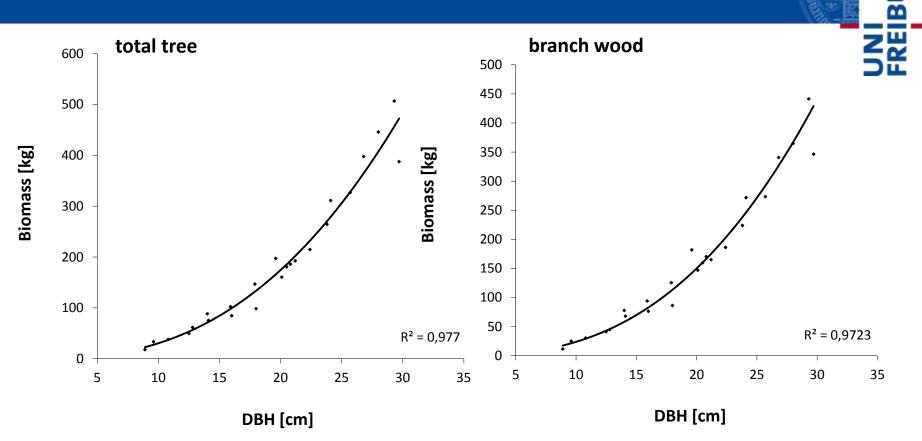
Selection criteria:

- •former/aged oak coppice (Quercus petraea)
- stand age ≈ 90 years
- no silvicultural measures since last coppicing
- trafficability

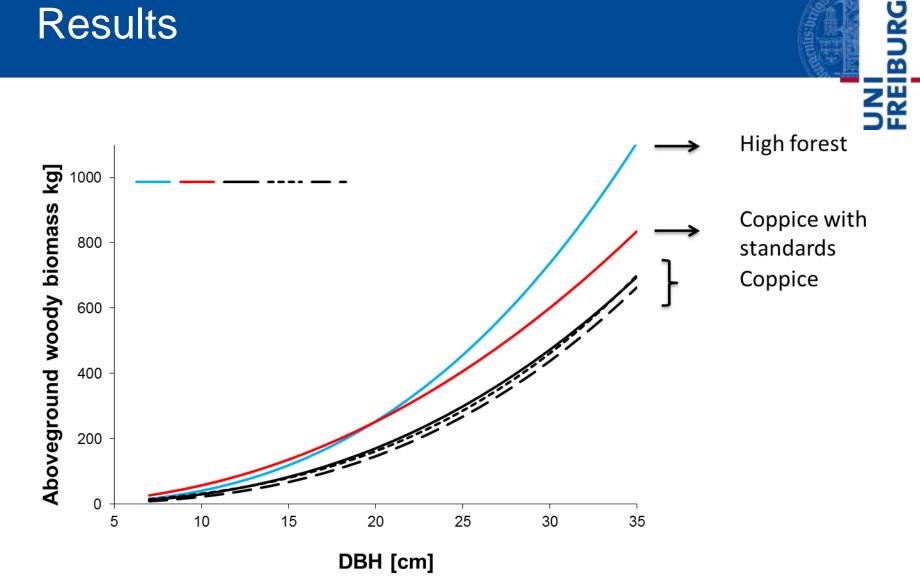


UNI FREIBURG

- 1. Full inventory of study stands \rightarrow species, DBH, ID
- 2. Generation of DBH classes
- 3. Selection of max. 2 study trees per DBH class



UNI FREIBURG


Stand characteristics:

Site	Species	n/ha	DBH [cm]		Basal area
			Mean	Range	[m²/ha]
Site B	<i>Q. pet</i> raea	1433	16	7.0-33.6	32,6
	C. betulus	88	9,9	7.0-19.9	0,7
	Total	1521			33,3
Site W	Q. petraea	1228	18,4	7.0-34.5	35,5
	C. betulus	88	12,8	7.0-24.9	1,3
	Total	1316			36,7

- biomass modelling \rightarrow power functions
- equation: compartment mass [kg]= a DBH^b
- equations for 12 oak & 10 hornbeam compartments

		Biomasse			
Species	Compartmen t* –	Site B		Site W	Z
	ι· –	t/ha	%	t/ha	% ⊃
Q. petraea	SHW	69.75	41,67	81,6	41,3
	SSW	36,37	21,73	42,7	21,6
	SBA	22,3	13,32	24,9	12,6
	ST	128,42	76,72	149,2	75,5
	Т	11,18	6,68	12,3	6,2
	S	10,72	6,4	11,9	6
	BW	13,46	8,04	17,4	8,8
	CW	35,36	21,12	41,6	21,1
	ABW	163,78	97,84	190,8	96,6
C. betulus	SBA	0,15	0,09	0,26	0,13
	SW	1,73	1,03	3,41	1,72
	ST	1,88	1,12	3,67	1,86
	BR	1,38	0,83	2,01	1,02
	BW	0,35	0,21	1,11	0,56
	CW	1,73	1,04	3,12	1,58
	ABW	3,61	2,16	6,79	3,44
	total stand	167,39	100	197,56	100

- UNI FREIBURG
- In this study simple power functions were developed to estimate total aboveground woody biomass of trees or tree compartments using only dbh as an easily measurable input variable.
- Application of biomass equations developed for other coppice forest resulted in very similar biomass estimates compared to our own.
- In absence of a locally developed or validated function, a general biomass function for oak and hornbeam from coppice forests can be used.

Read the whole story (and how it continued)

UNI FREIBURG

BIOMASS AND BIOENERGY 46 [2012] 722-730

Biomass equations for sessile oak (Quercus petraea (Matt.) Liebl.) and hornbeam (Carpinus betulus L.) in aged coppiced forests in southwest Germany

Christian Suchomel^{a,*,1}, Patrick Pyttel^{b,1}, Gero Becker^c, Jürgen Bauhus^d

Effects of different harvesting intensities on the macro nutrient pools in aged oak coppice forests

Patrick L. Pyttel*, Merle Köhn, Jürgen Bauhus

University of Freiburg, Chair of Silviculture, Tennenbacherstr. 4, D-79085 Freiburg, Germany

Thank you for listening!

This presentation was supported by:

