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The Natura 2000 network protects some of the 
most threatened species and habitats in the 
European Union, of which forests account for 
about 50% of the total designated area. This 
paper examines the broad habitat preferences 
of the terrestrial species listed in Annexes of 
the Birds and Habitats Directives, of which 
a majority are associated with non-forest 
habitats. By comparison, European red lists 
and the various country and regional level 
lists of species of principal importance contain 
many more species and species groups than the 
Directive Annexes. Foresters are likely to use 
a much narrower suite of species, often based 
only on the Annexes, when setting practical 
conservation targets for woodlands. 

Achieving the objective of ‘favourable conser-
vation status’, as required by the Directives, 
should apply equally to the designated forest 
habitat types and their listed specialist species. 

European Commission literature describes these 
habitats in terms of their typical tree, shrub 
and herbaceous species, although in practice a 
mixture of iconic and specialist Annex species 
may be used for making conservation assess-
ments. Recognising the value of traditional 
coppice and its long anthropogenic history can 
be considered a valid reason for conservation 
in itself, but this form of management is now 
in serious decline all over Europe. High forests 
and old growth habitats, together with their 
associated species, also have equal claims for 
protection under the Natura 2000 network. 
Given the difficulty of simultaneously achieving 
species and habitat targets in the context of both 
early and late-successional aspects of forest 
conservation, we consider different silvicultural 
strategies that may achieve wider biodiversity 
benefits in the forest environment.
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Some of the most valued and threat-
ened species and habitats in Europe 
are protected within the Natura 2000 

network under the Birds Directive (European 
Commission 1979) and the Habitats Directive 
(European Commission 1992). The latter 
Directive targets more than 230 ‘habitat types’ 
and 1500 animal and plant species for conserva-
tion in its various Annexes, many of which are 
rare, threatened or endemic. They include 303 
animals, 586 plants (Habitats Directive Annex II, 
HDII) and more than 190 birds (Birds Directive 
Annex I, BDI). For a further 400  species and 
sub-species listed in  Annex IV of the Habitats 
Directive (HDIV), which includes many that are 
also listed in HDII, a strict protection regime 
must be applied across their entire natural 
range in the European Union (EU), both within 
and outside Natura 2000 sites. 

Approximately 375,000 km2 of forests are 
included in the Natura 2000 Network, repre-
senting around 50% of its total area and 21% 
of the total forest resource in the EU (European 
Commission 2015). A large proportion of this 
forest would undoubtedly have been coppiced 
in the past: based on the average of 24 
European countries, up to 15% of the area is 
presently classified as coppice, together with a 
probably much greater extent of neglected or 
converted former coppices (Buckley and Mills, 
2015). Considering the large protected area 
and the strong emphasis given to conserving 
the threatened biodiversity of forest ecosystems 
within the EU, one would anticipate that a high 
proportion of Directive-protected species would 
be found in, or be dependent on, forested 
habitats. To discover whether this is the case, 
the habitat preferences of species listed in BDI 

and HDII were investigated. The contribu-
tion that the traditional forestry techniques 
of coppicing and pollarding can bring to the 
protection of biodiversity in Natura 2000 sites 
was also considered.

Many of the species on the BDI and HDII lists 
are species of conservation concern, judged as 
vulnerable or under threat by the International 
Union for Conservation (IUCN). We consider 
the composition of different taxa making up 
these lists, their endemicity, threat status, and 
their preferences for forest habitats or other, 
more open ones. In the case of forest and 
woodland habitats, the definition of ‘favourable 
conservation status’, as applied by the Bird and 
Habitat Directives to both habitats and species, 
especially more ‘typical’ species as well as the 
Natura 2000 species, depends on the ability of 
different forest management regimes to conserve 
them. Here we focus initially on traditional 
coppice forest management, a widespread but 
now rapidly disappearing silvicultural practice 
in Europe, and the implications that abandon-
ment or conversion to high forest might have 
for protecting habitats and species. At the same 
time we consider what additional protected 
species niches high forest systems might provide. 
Finally, we discuss management strategies that 
might deliver combinations of both early and 
late-successional growth stages, and which may 
serve to increase species diversity in forested 
landscapes. 

Introduction
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Methods: allocating broad habitat preferences to species

Using the HDII and BDI Annexes, each protected 
species was allocated to one or a number of broad 
habitat types, using the hierarchical classification 
proposed by the European Environment Agency 
(EUNIS) (European Environment Agency n.d.). 
The EUNIS species browser (http://eunis.eea.
europa.eu/species.jsp) lists the ‘most preferred 
habitats’ in its quick facts for nearly all of these 
species.   These, excluding fish, were allocated 
to the 10 EUNIS hierarchical habitats (http://
eunis.eea.europa.eu/habitats-code-browser.
jsp) described in Table 1. If no habitats were 
listed for a species on the EUNIS database, the 
world IUCN Red List species details (http://
www.iucnredlist.org/details/) were consulted.  

When not listed in either database, it was 
recorded in the ‘Insufficient data’ column, 
except for fewer than 10 cases where informa-
tion was taken, for example, from Wildscreen 
ARKive (http://www.arkive.org), EEA Eionet 
(https://www.eionet.europa.eu), Joint Nature 
Conservation Committee (http://jncc.defra.
gov.uk), Environment Directorate General of 
the European Commission (http://ec.europa.
eu/environment/index_en.htm) and Birdlife 
International (http://www.birdlife.org)

While recording this data, it was also noted if a 
species was on the IUCN Red List and if it was 
an endemic.

1 Marine
Marine habitats: fully saline, brackish or almost fresh. Includes marine littoral habitats 
including tidal saltmarshes; marine littoral habitats and strandlines; waterlogged 
littoral saltmarshes and associated saline or brackish pools. 

2 Coastal
Habitats are those above spring high tides, including coastal dunes and wooded 
coastal dunes, beaches and cliffs. Supra-littoral habitats include strandlines, moist and 
wet coastal dune slacks and dune-slack pools. 

3
Inland  
surface                          
waters

Non-coastal fresh or brackish waterbodies (rivers, streams, lakes and pools, springs), 
including their littoral zones. Also constructed waterbodies (canals, ponds, etc.) 
supporting semi-natural communities and seasonal waterbodies. 

4 Mires, bogs 
and fens

Wetlands, with the water table at or above ground level for at least half of the year, 
dominated by herbaceous or ericoid vegetation. Includes inland saltmarshes and 
waterlogged habitats where the groundwater is frozen. 

5 Grasslands
Dry or only seasonally wet land with >30% vegetation cover. Dominated by grasses 
and other non-woody plants, including mosses, macro-lichens, ferns, sedges and 
herbs. Includes semiarid steppes, successional weedy vegetation and managed grass-
lands (e.g. recreation fields and lawns). 

6 Heathland
Dry or only seasonally inundated land with >30% vegetation cover. Includes tundra; 
heathland dominated by shrubs or dwarf shrubs not above 5m tall. Also shrub orchards, 
vineyards, hedges, climatically-limited dwarf trees (krummholz) >3 m high, Salix and 
Frangula carrs. 

7 Woodland
Dominated by trees over 5m, with a canopy cover of at least 10%. Includes lines of 
trees, coppices, tree nurseries, plantations and fruit and nut tree orchards. Includes 
Alnus and Populus swamp woodland and Salix. Excludes Corylus avellana scrub and 
Salix and Frangula carrs. 

8 Sparsely 
vegetated

Habitats with less than 30% vegetation cover which are dry or only seasonally wet. 
Includes caves and passages including underground waters and disused underground 
mines, and habitats with permanent snow and surface ice.

9 Cultivated Habitats maintained solely by frequent tilling or recently abandoned arable land and 
gardens. 

10 Constructed
Primarily human settlements, buildings, industrial developments, transport networks 
and waste dumps. Includes artificial saline and non-saline waters with wholly const-
ructed beds or heavily contaminated water, virtually devoid of plant and animal life. 

Summary of 10 broad habitat types and their descriptions, based on the hierarchical Table 1.  
classification proposed by the European Environment Agency (EUNIS)  
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results

Species groupings

We calculate that 80-90% of BDI and HDII 
species are also registered on the International 
Union for Conservation of Nature Red List 
of Threatened Species (IUCN 2015), which 
classifi es species on the basis of their relative 
extinction risk, consistent with their need for 
protection (Fig. 1). Relative to their species 
numbers, plants, birds and mammals are well 
represented, but some taxa, such as the arthro-
pods, have received less attention, with under 
50% of HDII species recorded on the world 
Red List, perhaps refl ecting the relative scarcity 
of specialists dealing with this numerous group. 
Moreover, the species chosen for protection 
under HDII and HDIV are subject to taxonomic, 
geographic and aesthetic bias, with preferences 
given to larger, iconic species, but also including 
many that are widespread (Cardoso 2012). 

This bias is evident in the relative dominance 
of vertebrates compared with very few in 
the arthropod group, which in turn is biased 
towards Lepidoptera and Coleoptera, while 
completely lacking large insect Orders such 
as Diptera and Hymenoptera. Although plant 
species make up the largest group in HDII, 
only 32 bryophytes and no fungi or lichens are 
included (Orlikowska et al. 2016).

Endemicity and threat status

Listing of HDII species is heavily infl uenced 
by their endemic status. Overall, 415 prima-
rily terrestrial species or subspecies (41.7%) 
are strict endemics, i.e. restricted to one EU 
country or to Macaronesia. Plants and molluscs 
have the highest share of endemic taxa (63.8% 
and 48.3% respectively), with reptiles and 
amphibians intermediate and breeding birds 

Numbers of BDI and HDII species and on the world IUCN Red List Figure 1.  
present in each taxonomic group, excluding fi sh
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the lowest (4.9%) (Fig. 2). The low number 
of arthropods (8.3%) almost certainly refl ects 
an incomplete assessment of this very diverse 
group. Macaronesian plant species, being by 
defi nition full endemics, make up over a quarter 
of all HDII plants, while of the non-Macaronesian 
plants, 55.9% are also strictly endemic. 

Nearly half of BDI and HDII 
species (48%) fell into 
the threatened categories 
(critically endangered, 
endangered, vulnerable 
and near-threatened) on 
the world Red List. 
The fi gures were (Fig. 3):

87% for reptiles, •   
68% for molluscs, •   
55% for plants, •   
52% for amphibians •   
43% for mammals, •   
36% for arthropods•   
21% for birds. •   

While reptiles, molluscs and plants were 
relatively more threatened, many mammals, 
amphibians and birds were of ‘least concern’ on 
the IUCN World Red List, but when viewed in 
a narrower European context, several species 
may be perceived as more threatened.

Percentage of BDI and HDII species from different terrestrial taxonomic groups Figure 3.  
in the IUCN world list categories

Percentage of BDI and HDII endemic species, Figure 2.  
by taxonomic groups (excluding fi sh)
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Habitat distributions of protected species

The most frequent preferred species habitats were 
in sparsely vegetated habitats, with grasslands, 
forests, heathlands and wetlands intermediate, 
and relatively few in marine, coastal, cultivated 
and construction sites (Fig. 4). Several plant 
species were given preferred habitat status in 
sparse vegetation, although many could also be 
categorised more specifi cally as species of sand 
dunes, cliffs, tundra and alpine habitats. Of 
particular interest was the ‘forest and woodland’ 
category, which contained relatively balanced 
proportions of the different taxonomic groups 
compared with other categories, including a 
comparatively high number of arthropods, 
amphibians and mammals, although relatively 
fewer plants and reptiles than in other open 
habitats. As forests cover such a large part of 
the Natura 2000 network, it is not surprising 
that they shelter a large number of Directive-
protected species. Collectively, however, the 
great variety of more open habitats (e.g. sparse 
vegetation, grassland, heath, etc.) contain 
signifi cantly more. The vast majority of these 
BDI and HDII species appeared to be associated 
with non-forest or relatively open conditions. 

Spatial hierarchies of protected species

Lists of rare species tend to become more refi ned 
as the area of interest narrows. A hierarchical 
gradient taken from the IUCN world perspec-
tive, diminishing in scope for Natura 2000 and 
the European Red Lists, and further to the more 
localised level of countries and regions, shows 
that species lists of principal conservation 
importance often tend to become more focused 
and lengthier (Table 2). In separate European 
countries and regions, protected species lists 
are generally focused more at this level than 
at the BDI and HDII Annex level: those species 
relatively widely distributed at a European level 
effectively become ‘rarer’ at a local level, and 
therefore more notable. Compared with the BDI 
or HDII species annexes, European Red Lists 
contain many more species, often more than 
three times the number. This is particularly 
obvious for invertebrate Red Lists of dragonfl ies 
(Kalkman et al. 2010), saproxylic beetles (Nieto 
and Alexander 2010), non-marine molluscs 
(Cuttlelod et al. 2011), butterfl ies (van Swaay 
et al. 2011) and bees (Nieto et al. 2014). At a 
national level the picture is even more variable: 
in Britain, for example, as would be expected 

Numbers of BDI and HDII species occurring in Figure 4.  
different EUNIS habitat types
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from this country’s size and its history of glacial 
impoverishment, the numbers of vascular 
plants, mammals, reptiles and amphibians 
were lower than the equivalent BDI and HDII 
annexes and European red lists, but a greater 
effort has been made to cover non-vascular 

plants, invertebrates, fungi and lichens. In other 
countries and regions, such as France, Estonia 
and Flanders, the same tendency to specialise 
within some of the broader taxonomic groups is 
seen (Table 2).

Numbers of terrestrial species (mostly terrestrial or freshwater) selected at different spatial levels Table 2.  
for biodiversity conservation: the IUCN world red list, the BDI and HDII, the IUCN European red lists, 
UICN French red lists, the UK Biodiversity Action Plan, Estonian protected species and Flanders red lists 

*to be completed by 2018  † bryophytes only   ‡ butterflies only

1IUCN (2015) 2European Commission (1992) 3European Commission (1979) 4Natural Environment and Rural 

Communities (NERC) Act (2006a, 2006b), Nature Conservation (Scotland) Act (2004) 5Riigi Teataja (2014a, 

2014b) 6Bilz et al. (2011) 7UICN France et al. (2012) 8UICN France et al. (2009) 9Van Landuyt et al. (2006) 
10Temple and Terry (2007) 11UICN France et al. (2009) 12Maes et al. (2014) 13Kalkman et al. (2010) 14De Knijf 

(2006) 15Nieto and Alexander (2010) 16Thomaes et al. (2015) 17Cuttelod et al. (2011) 18van Swaay et al. (2010) 
19UICN France et al. (2014) 20Maes et al. (2011) 21Nieto et al. (2014) 22Cox and Temple (2009) 23UICN France 

et al. (2015) 24Jooris et al. (2012) 25Temple, Cox (2009) 26Birdlife International (2015) 27UICN France et al. (2011) 
28Devos et al. (2004).

Taxonomic 
group

HDII 
and BDI 
species 

on IUCN 
world red 

list1

HDII 
and BDI 
species 
(Natura 
2000)2,3

European 
red list 
(EU27)

France red 
lists

Britain – 
species of 
principal 

importance4

Estonian 
protected 
species5

Flanders 
red lists

Vascular 
plants 412 554 *17506 10187,8 382 215 11529

Non-vascular 
plants 1 32 * † 552 46

Mammals 45 47 17910 9911 25 18 6512

Total  
invertebrates 75 135 597 52

    Dragonflies 11 11 *13413 3 5 6414

    Saproxylic           
    beetles 9 17 *40815 10 3 1916 

    Molluscs 31 31   *180517 29 4

    Lepidoptera 14 38 421‡18 253‡19 195 10 72‡20

    Bees 0 0 190021 44 18

Reptiles 23 24 12822 3523 6 5 624

Amphibians 25 25 8225 3523 4 11 1624

Fungi/lichens 0 0 0 782 97

Birds 150 162 39926 34527 105 93 20028
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At forest species protection level, Britain’s state 
forestry service (the Forestry Commission) has 
produced a web-based decision support system 
for its managers dealing with Habitats and Rare, 
Priority, and Protected species (HaRPPS). This 
provides information on about 123 woodland 
species, including: 

25 mammals, •   
37 birds, •   
4 herptiles, •   
21 invertebrates, •   
13 vascular plants and •   
23 fungi and lower plants (Forest Research •   
2011), 

allowing forest managers to predict which 
species might be present in a given area and 
to test the impact of forest operations on them. 

Although the British lists of species of principal 
importance for conservation cover all habitats, 
including forests (NERC Act 2006a,b; Nature 
Conservation (Scotland) Act 2004) there are big 
disparities with HaRRPS for different taxonomic 
groups: mammals, birds and herptiles are well 
covered, whereas vascular plants, bryophytes, 
liverworts and invertebrates are not (Fig. 5). 
Practising forest managers should be able to 
identify iconic animals and birds in their well-
protected groups, but are less likely to have 
specialist knowledge of some invertebrates, 
fungi, vascular and non-vascular plants.

Numbers of species of principal importance (SPI) in Britain Figure 5.  
by taxonomic group, relative to that of the Forestry Commission’s 

information system for use in woodland habitats (Habitats and Rare, 
Priority and Protected Species HaRPPS) (Forest Research 2011)
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Discussion

Favourable conservation status

The emphasis placed on rare or iconic species is 
not always effective in promoting species diver-
sity, as the overriding issue for forest species is 
fundamentally the protection of their habitat 
and its quality. However, when compiling the 
Standard Data Forms for the designation of 
Natura 2000 sites, agencies tend to focus on 
rare species, irrespective of whether they are 
only a fraction of a metapopulation that extends 
beyond the boundary of the protected area 
(Battisti and Fanelli 2014). In fact, in terms 
of ecological integrity, achieving a ‘favourable 
conservation status’, a legal requirement of 
Natura 2000 designation, applies to any ‘typical 
species’ of a HDI habitat (Rees et  al. 2013). 
The Directive applies equally to the habitat, 
which must be stable or increasing and likely 
to sustain its structure and function for the 
foreseeable future. The reality is that only 15% 
of the protected forest habitats in the EU are 
reported as being in a favourable condition 
due to multiple factors, such as fires, disease, 
browsing, pollution, urbanisation, etc., but 
mainly to forest and plantation management, 
such as the removal of dead and dying trees 
(European Commission 2015). Among the 
human activities reported on Standard Data 
Forms, agriculture and forestry were associated 
with more than 86% of a sample of Natura 2000 
sites, of which forestry activities affected 59% 
(Tsiafouli et al. 2013). Many broadleaved forest 
HDI habitats described as ‘Temperate Forests 
of Europe’ in the European Commission’s 
Interpretation Manual of European Union 
Habitats EU28 (European Commission 2013) 
have the potential to be coppiced, based on 
the re-sprouting potential of the dominant 
trees (Mairota et al. 2016), although most is 

now high forest. The summary descriptions of 
each forest habitat type are of essentially wide-
spread or characteristic plant species (Table 3), 
including several relatively common herbs and 
grasses, which depend on the forest margins 
and the more frequently open canopies that 
could be provided by coppice management. Very 
few HDII species (i.e. rarities and endemics) are 
listed. When this suite of ‘typical’, widespread 
species is present, it follows that a ‘favourable 
conservation status’ is more likely to be achieved 
for rarer ones.

To support the regular monitoring of Natura 
2000 sites a range of species specialists associ-
ated with long-term anthropogenic management 
of their forest habitat could be identified, as 
recognised by the Habitats Directive (Epstein 
et al. 2015). Such ‘indicator species’ would not 
necessarily be rare endemics or HDII species, 
but could represent several taxa, including 
vascular plants, bryophytes, wood-decaying 
fungi, epiphytic lichens, saproxylic beetles and 
land snails (Nordén et al. 2014). Some of these 
are more properly indicators of traditional high 
forest or old growth, but many ancient woodland 
‘indicator plants’ with limited dispersal charac-
teristics (sensu Hermy et al. 1999; Verheyen 
et al. 2003; Kimberley et al. 2013) are also 
associated with former coppice habitats;  
Decocq et al. (2005) even suggested that they 
might be better labelled ‘coppice-woodland 
species’. In northwest Germany, Schmidt et al. 
(2014) listed 67 ancient woodland indicator 
plants, most of them typical of closed forests, 
but with 13% preferring forest edges and clear-
ings, while Pellisier et al. (2013) identified 
40 ‘core’ and 38 ‘periphery’ forest species based 
on a large database of over 1800 forest patches 
in northern France.
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Trees /20 /20 /20

Quercus petraea 8 Acer tartaricum 3 Ilex aquifolium 2

Fagus sylvatica 6 Betula pubescens 3 Populus nigra 2

Quercus cerris 6 Fraxinus angustifolia 3 Populus tremula 2

Quercus robur 6 Fraxinus excelsior 3 Quercus pyrenaica 2

Carpinus betulus 5 Euonymus verrucosus 3 Sorbus domestica 2

Acer campestre 4 Picea abies 3 Taxus baccata 2

Sorbus torminalis 4 Quercus pubescens 3 Tilia tomentosa 2

Tilia cordata 4 Acer pseudoplatanus 2 Ulmus glabra 2

Abies alba 3 Alnus glutinosa 2 Ulmus minor 2

Shrubs /20 /20 /20

Euonymus verrucosus 3 Frangula alnus 2 Vaccinium myrtillus 2

Ligustrum vulgare 3 Pyrus pyraster 2

Buxus sempervirens 2 Ruscus aculeatus 2

Herbaceous Species /20 /20 /20

Carex montana 4 Anemone nemorosa 2 Hieracium sabaudum 2

Dentaria spp. 4 Buglossoides purpurocaerulea 2 Lathyrus niger 2

Festuca heterophylla 3 Carex michelii 2 Luzula forsteri 2

Knautia drymeia 3 Cyclamen purpurascens 2 Molinia caerulea 2

Potentilla micrantha 3 Galium schultesii 2 Potentilla alba 2

Pteridium aquilinum 3 Galium sylvaticum 2 Pulmonaria mollis 2

Tanacetum corymbosum 3 Helleborus odorus 2 Tamus communis 2

Species with frequencies of 10% (2/20) or more that are named in the summaries of 20 different Table 3.  
forest habitat types from the ‘Forests of Temperate Europe’ (Annex 1 code 9100); the list is based on 
26,433 Natura 2000 sites where at least 100 sites are devoted to each forest habitat type

Aesthetic as well as biodiversity criteria can be 
taken into account in species protection. In the 
Zurich Canton of Switzerland, aesthetic criteria 
were involved in an action plan to restore the 
typical flora (from a target list of 172 species) 
associated with ‘light’ or open-canopied forests,   
which was carried out on a portion of the total 
forest area of 47,500 ha (Bürgi et al. 2010). The 
areas selected were based on an analysis of the 
target species and forest management practices, 
recognising not only anthropocentric history 
but also the ecological continuity of coppice 
habitats within the region, much in the spirit of 
the Habitats Directive.

Provision for coppice specialists

Traditional coppice management, often based 
on regular short rotations over centuries, has 
produced a habitat for species that are adapted 
to the dynamic of rapidly altering light, temper-
ature and hydrological regimes (Peterken 1993, 
Rackham 2003, Szabo 2010). These regular, 
intense pulses of disturbance tend to boost the 
diversity in both the ground flora and shrub 
layers (Ash and Barkham, 1976; Decocq et 
al. 2004; Brunet et al. 2010; Verheyen et al. 
2012; Campetella et al. 2016). The transient 
woodland structure produced is important for 
many songbirds that forage and nest in young 
growth, as well as for other open-ground 
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foragers (Camprodon and Brotons 2006; Fuller 
2012). After coppicing, the resulting sunny and 
warm miocroclimate creates suitable conditions 
for a range of butterflies, macromoths and other 
invertebrates (e.g. Sparks et al. 1996; Fartmann 
et al. 2013; Horák et al. 2014), which take 
advantage of increased understorey flowering 
and abundant sources of pollen and nectar. 

While many thermophilic and opportunistic 
species are cosmopolitan, others are more 
restricted to the coppice habitat. They include 
many vascular plants tolerant of intermittent 
shading, accompanied by a large insect biomass 
dependent on flowers and young foliage 
(Warren and Key 1991; Greatorex-Davies and 
Marrs 1992). In order to maintain viable popu-
lations, sufficient canopy openings and forest 
margins must be present, whether created 
anthropogenically or by a natural disturbance 
dynamic. Some beneficiaries that are special-
ists of the coppice habitat are considered of 
high conservation value: there are examples of 
conservation coppicing carried out expressly 
to support a single species or group of species. 
Examples are rare butterfly populations such 
as the Scarce Fritillary (Euphydryas maturna) 
and many others that are not necessarily listed 
in HDII and HDIV (e.g. van Swaay et al. 2006; 
Kobayashi et al. 2010; Fartman et al. 2013; 
Dolek et al. 2018). Very low densities of stand-
ards in coppice, covering as little as 10-15% of 
the stand, have been recommended in order to 
maintain open conditions for butterfly conserva-
tion (Clarke et al. 2011). Coppicing may also be 
maintained specifically for other iconic species 
such as the hazel grouse (Bonasa bonasia), 
where coppice provides a substitute for its 
optimum forest habitat of shrub layers in gaps 
of old-growth forests (Kajtoch et al. 2012), for 
migrant songbirds that nest and forage in scrub 
(e.g. Sylvia species), and small mammals such 
as the hazel dormouse (Muscardinus avellanarius) 
(Ramakers et al. 2014; Sozio et al. 2016). 

Many other species also benefit from the 
openings created by coppicing. However, in long-
neglected or converted coppice stands, plant 
species diversity and some red-listed herb layer 
species tend to diminish rapidly (Van Calster et 
al. 2008a; Kopecky et al. 2013; Vild et al. 2013; 
Müllerová et al. 2015). In formerly grazed 
and coppiced sub-continental oak forest in the 
Czech Republic, these declining and endan-
gered species tended to persist in locations with 
high light availability and relatively higher pH 
(Roleček et al. 2017). Similarly, in comparing 
vegetation data from still-active selection 
coppices with beech-dominated high forests 
in the Banat region in Romania, the coppices 
were slightly more diverse, containing ther-
mophilous and non-forest species more typical 
of more open grassland habitats, although they 
were similar in herb species richness to high 
forests (Šebesta et al, 2017). The re-application 
of traditional forest management practices may 
be able to reverse successional tendencies in 
long-abandoned or converted former coppices.  
In lowland thermophilous oak forest, restoration 
of a litter-raking treatment effectively increased 
the richness and cover of both forest and dry 
grassland species over a 5-year period (Douda 
et al. 2017). The restoration of canopy thinning, 
analogous to coppicing, in a long abandoned 
ancient coppice-with standards woodlands, has 
been shown to potentially support and revive 
light-demanding woodland floras (Vild et al. 
2013) and also to increase the functional diver-
sity responses of plant and ground-dwelling 
spider communities (Šipoš et al. 2017). 

Several researchers have shown that vascular 
plants in the herb layer of beech forests were 
marginally more diverse in managed stands or 
after disturbance at the plot level, compared 
with unmanaged stands, later to decline with 
neglect (e.g. Schmidt 2005; Bartha et al. 2008; 
Garadnai et al. 2010; Mölder et al. 2014). At the 
patch level, Campetella et al. (2016) showed 
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that a rich species pool of specialist plants associ-
ated with beech forest in the Central Apennines 
could be maintained under active manage-
ment, i.e within a landscape mosaic comprising 
different woodland development stages. In the 
same region, Scolastri et al. (2016) found that 
beech forests, whether classified as old coppice-
with-standards or as high forest, contained 
many heliophilous plants indicative of past 
light regimes, as well as many shade-tolerant, 
understorey species typical of 9210* Apennine 
beech forests with Taxus and Ilex recognised in 
the European Commission’s Habitat Directive 
Interpretation Manual (European Commission, 
2013). Cervillini et al. (2017) considered that 
with canopy cover stabilising between 10 and 
16 years, approximately 10 years before coppice 
harvesting, many such specialists of shaded 
beech forests were able to persist. 

Conversion to high forest

Coppices gradually change their biological 
character when they are abandoned or are 
converted into high forests. Several long-term 
studies have investigated the vegetational and 
edaphic changes resulting from this transition 
in European forests (Debussche et al. 2001; 
Peterson 2002; Decocq et al. 2004, 2005; Van 
Calster et al. 2007, 2008b; Baeten et al. 2009; 
Verheyen et al. 2012; Kopecký et al. 2013; 
Verstraeten et al. 2013; Becker et al. 2016). Most 
of these recorded a decline in species-richness 
of the tree, shrub and herb layers, with homog-
enisation increasing under the shade cast by a 
developing canopy, together with increases in 
shade-tolerant, vernal and eutrophic species. 

Changes in the vegetation, such as increasing 
tree cover, may be happening in parallel with 
coppice abandonment, frequently detected 
in signals of eutrophication and acidification 
resulting from increased atmospheric deposi-
tion (Verheyen et al. 2012), as well as potential 
climate change. Peterson (2002), investigating 

a chronosequence of sample plots in ageing 
coppice in Denmark (median age = 40 years), 
suggested that increasing shade, together 
with the build-up of acidifying litter, tended 
to reduce species density and to favour clonal 
forest species. In Belgium, Van Calster et al. 
(2007) also reported increases in soil acidity 
in coppice-with-standards undergoing conver-
sion to high forest from 1967-2005, at least 
partly explained by the poor litter quality under 
canopies of Fagus sylvatica and Quercus robur. 
In recordings made over an interval of 50 years, 
Verstraeten et al. (2013) found that the species 
pool of understorey herbs in former coppice-
with standards generally declined, as did 
Ellenberg light indicator values, while those for 
nitrogen availability increased. The high input 
of atmospheric deposition within this period 
shifted the plant community towards a more 
N-demanding and shade-tolerant type. 

In Germany, similar observations were made by 
Becker et al. (2016) in coppice-with-standards 
woodlands which had been in conversion for 
c. 100 years. They recorded decreases in species 
richness, accompanied by increases in nitrophilic 
and shade-tolerant species over a recording 
interval of 41 years, although the legacy of 
coppicing was still evident in the composition 
of the tree, shrub and herb layers, suggesting 
that the influence of former management 
could persist for more than a century. In beech-
dominated forest that had formerly been under 
a coppice-with–standards regime, Heinrichs 
and Wolfgang (2017) detected relatively more 
homogenisation over time in those understorey 
communities situated on dry, nutrient-poor and 
sun-exposed slopes, which tended to lose light-
demanding, drought tolerant and oligotrophic 
species, compared with a more mesic forest 
community, which tended to gain in generalist 
species. A more recent resurvey interval, with 
a baseline set in the 1990s, detected similar 
increases in nitrophilous and mesotrophic 
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light-demanding species in formerly coppiced 
thermophilous oak forests in SW Poland 
(Reczyńska and Świerkosz 2016). However, in 
this case an increase in plant biodiversity and an 
inferred decrease in soil pH occurred over the 
20-year interval, coinciding with major reduc-
tions in sulphur emission levels between 1960 
and 2000. Other drivers of change were declining 
soil moisture and increased ungulate grazing. 

Provision for other forest habitats

Notwithstanding the apparent lack of dead-
wood for saproxylic niches in coppices, it has 
been pointed out that some are capable of 
maintaining microhabitats such as dendro-
thelms and mould cavities in old coppice 
stools, pollards or standard trees (Lassauce 
et al 2012; Vandekerkove et al. 2016, Larrieu 
et al. 2016). Microhabitats in ageing stands 
of trees are key components of biodiversity – 
for example tree cavities will benefit several 
mammals, birds, arthropods, but also fungi, 
bryophytes and lichens, including several 
obligate saproxylic beetles listed in Annex II of 
the Habitats Directive such as Limoniscus viol-

aceus, Osmoderma eremitica, Cerambyx longicorn 

and Lucanus cervus. As stands age and amounts 
of deadwood increase, old coppices may even 
have the potential to allow saproxylic species to 
re-colonise. In the medium term at least, they 
may favour species with a preference for sun-
exposed wood (Vandekerkhove et al. 2016). 

The reductions in herb-layer diversity commonly 
observed in unmanaged forests do not apply to 
many other species groups. A meta-analysis of 
European forest literature found a marginally 
wider species diversity in unmanaged forests 
compared with managed ones, the differences 
increasing with time since abandonment (Paillet 
et al. 2010). Management tended to favour light-
demanding understorey vascular plants, ruderals 
and competitive species, whereas bryophytes, 
lichens, fungi, saproxylic beetles and carabids, 

more dependent on closed-canopy, benefited 
from abandonment. However, the way in which 
high forests are managed may considerably 
effect the biodiversity of species requiring longer 
rotations. A systematic Biodiversity Exploratory 
Project on beech high forests in Germany actually 
found a greater species diversity in managed 
forests compared with unmanaged ones, but 
the former contained higher average amounts 
of deadwood, possibly accounting for a higher 
diversity of specialist deadwood beetles, mosses 
and lichens (Müller et al. 2015). 

Conversely, in three European biogeographical 
regions Zehetmair et al. (2015a,b) found no 
differences between commercially exploited 
Natura 2000 sites and matching non-Natura 
2000 stands of 9130 Asperulo-Fagetum forest in 
terms of their densities of forest-dwelling bats or 
beetle diversity (including saproxylic species). 
This suggested Natura 2000 status alone would 
not make the stands more ecologically effec-
tive, especially for encouraging late succession 
species, and that additional conservation efforts 
were needed in these designated stands. This 
would require more deadwood, both standing 
and fallen, retention of ‘habitat trees’ with 
microhabitats such as cavities and bark pockets, 
and mature, living trees as potential recruits. 
Current forest certification schemes and local 
forest administration rules increasingly advocate 
such conservation measures, but non-selective 
and intensive harvesting practices in many forest 
types still tends to remove senescent trees and 
reduce deadwood (Larrieu et al. 2016). This is 
particularly the case in actively managed coppice 
woodland with few, if any, mature trees, except 
in ageing stands that are no longer exploited.

In another forest type, old thermophilic oak 
forests, canopy openness favoured saproxylic 
species (fungi, lichens, beetles, ants, bees and 
wasps), inferring that coppice and wood pasture 
could maintain their populations in more open 
conditions (Horák et  al. 2014). Similarly, 
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in lowland oak forest in southern Moravia, 
canopy openness favoured an optimum diver-
sity of spiders (Košulič et al. 2016), although 
these authors suggested that small-scale 
disturbances created by conservation thinning 
and selective harvesting, rather than exten-
sive coppicing, could adequately maintain 
the various successional stages required.  
In old-growth, predominantly beech forest in the 
Czech Republic Horák et al. (2016) also found 
that saproxylic beetle richness was positively 
influenced by canopy openness, as well as by 
the the quantity of deadwood, whereas saprox-
ylic fungi species responded more to canopy 
closure, deadwood quantity and higher levels of 
humidity. The higher temperatures under more 
open canopies might also partially compensate 
for a lack of deadwood (Schulze et al. 2016).  
Deadwood and old-growth conditions equally 
benefit the diversity of bird and bat communi-
ties. Cavity-nesting birds, as well as gleaner 
bats, were positively associated with standing 
deadwood in a study comparing managed 
and unmanaged stands of both lowland and 
upland forests in France (Bouvet et al. 2016).  
More nesting and feeding opportunities were 
available when microhabitats such as cavities 
and cracks were abundant, but insectivore 
birds, which require more open forests with 
well-developed shrub layers, were negatively 
affected by high densities of living trees.

Clearly, a range of forest age-classes or patches 
at a landscape scale would help to optimise their 
species diversity. While British literature tends to 
emphasise the benefits of young growth associ-
ated with coppice for birds, both European and 
North American studies emphasise the merits of 
later stand development for this same taxonomic 
group, perhaps reflecting the fact that Britain 
has relatively fewer old-growth stands (Quine 
et al. 2007). Thus, some balance between the 
extent of open and closed forests should deliver 
the maximum biodiversity for all taxa.

Strategies to increase biodiversity

What other forms of silviculture might mirror 
the biodiversity associated with coppice 
management? Clear-cutting routines, which 
create abundant open space after harvesting, 
have aspects in common with a coppice cycle, 
although in coppice the canopies generally 
recover faster through vegetative regeneration 
and are also harvested earlier. Contrasting 
with traditional coppice-with-standards, the 
more frequent harvests in forests undergoing 
selective cutting may actually disadvantage 
the ancient woodland flora by causing greater 
disturbance (Decocq et al. 2005). In another 
context, the type of timber-harvesting practice, 
whether clear-cutting, thinning or selective, 
had relatively little effect on understorey plant 
diversity in temperate North American forests 
(Duguid and Ashton 2013). However, in this 
case selective cutting did increase plant species 
diversity compared with unharvested controls, 
possibly because the frequency of interventions 
increased the opportunity for early successional 
ruderals to co-exist with late successional peren-
nials, analogous to the situation in harvested 
traditional coppices in Europe. 

High forests, if neglected or managed along 
continuous cover, selection, or close-to-nature 
forestry lines, are far less likely to sustain large 
populations of light-demanding, thermophilic 
species, unless disturbance is sufficiently 
frequent and on a scale large enough to trigger 
patches of young growth across the landscape. 
In a comparison of intensively managed shel-
terwoods in Germany with the more extensive 
felling practices in Romania, where a period 
of self-thinning was followed by clear-cutting, 
Schulze et al. (2014) suggested that shelter-
woods were probably less effective in promoting 
a wider biodiversity. At a practical level, some 
forest owners might prefer the simplicity of a 
clear-cutting routine to more intricate, close-
to-nature management designed to optimise 
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stand structure, species composition, amounts 
of deadwood and habitat trees for conservation 
(Borrass, 2014). 

The few studies directly comparing managed 
and unmanaged forests have tended to agree 
that veteran trees and deadwood should be 
retained in order to support a full biodiversity 
of species, because the disintegration phase 
in forest development generally provides the 
highest biodiversity (Winter and Brambach 
2011). If a few trees are allowed grow to large 
diameters, e.g. for more than 150 years, they will 
increasingly provide the cavities, dendrothelms,  
bark cracks and fungal sporophores that 
are missing in younger stands. For beech-fir 
forests Larrieu et al. (2012) recommended 
conserving 10-20% of the forest area as veteran 
trees, retaining at least some individuals of 
>70cm  diameter; similarly, for beech forests, 
Gossner et al. (2013) suggested retaining 
‘habitat’ trees of >50cm diameter. 

Since coppice rotations are far too short to 
allow trees to enter the disintegration phase, 
longer rotations incorporating significant 
amounts of young growth could be achieved in 
irregular and strip shelterwoods, wood pastures 
and standards within the coppice. Standards 
could potentially provide some microhabitats 
and deadwood, but are traditionally felled at 
relatively young biological ages, typically at 
100 years or less (Matthews 1989; Harmer and 
Howe 2003), and would need to be retained for 
longer if their full biodiversity potential were to 
be realised. Larrieu et al. (2012; 2016) consid-
ered that intervals of 50 years without harvesting 
in coppice-with-standards was insufficient 
to reach tree-bearing microhabitat densities 
approaching those of old-growth forests; double 
this period was more likely to achieve it. Large 
diameters of deadwood, favoured by many 
saproxylic beetles, can coexist within relatively 
open and sunny conditions in coppices and 
wood-pastures (Seibold et al. 2015; Sebek et al. 

2015). Rather longer standard tree rotations of 
125 years have been recommended by others 
for conservation reasons, covering 20-25% of 
the area (Hopkins and Kirby 2007). A greater 
proportion of older trees within coppice is 
provided by the ‘single tree orientated silvi-
culture’ method advocated by Manetti et al. 
(2016), in which low densities of target trees 
within the coppice are selected (e.g. 100 ha-1) 
and thereafter favoured by frequent thinning of 
their immediate neighbours, until they become 
valuable timber trees. This system produces a 
varied horizontal and vertical canopy structure 
comprising isolated trees, thinned stools and 
unmanaged coppice, although the crop trees 
are destined to be harvested when biologically 
still young, at merchantable size. Another 
silvicultural technique is to manage groups 
of standards as mini-high forests, embedded 
within the coppice stand (Mairota et al. 2016).

Standing and lying deadwood accumulation is 
strongly linked to biodiversity; the larger pieces 
providing a stable and enduring environment 
for the larvae of large-bodied beetles (Gossner 
et al. 2013). In European forests, a deadwood 
threshold of the order of >20-50m3 ha-1 has been 
suggested as necessary to support a high diver-
sity of saproxylic organisms (Müller and Bütler 
2010; Lachat et al. 2013). However, a signifi-
cant patch-scale threshold of >300 m3 ha-1 was 
found in old-growth, mixed-montane forests in 
the Czech Republic, more than twice the level 
recommended by Müller and Butler (2010) 
for this type of forest (Horák et al. 2014).  
In south-eastern Germany, both the quantity and 
the diversity of deadwood (in contrasting sunny 
and shady situations) were found to be impor-
tant drivers of saproxylic beetle assemblages in 
a mixed montane broadleaved/coniferous forest 
(Seibold et al. 2016).  An extensive review of 
biodiversity within European beech forests by 
Brunet et al. (2010) concluded that the general 
sensitivity of species groups to shelterwood 
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management roughly followed the order: 

    herbaceous plants 
< soil macrofungi 
< ground dwelling arthropods 
< land snails 
< saproxylic fungi 
< hole nesting birds and saproxylic insects 
< epiphytic lichens and bryophytes 
< epixylic bryophytes, 

a further argument for retaining a proportion 
of veteran trees in order to fully represent the 
saproxylic and epiphytic species. Shortening 
rotation lengths, as in the increased exploita-
tion of wood energy in aged coppices, could 
negatively impact saproxylic biodiversity if 
‘habitat trees’ are not retained (Lassauce et al. 
2013).

To optimise conservation objectives, it is 
frequently suggested that older trees and 
old-growth features should be deliberately 
interspersed amongst conventional forest 
cycles - an ideal situation would be a mosaic of 
different forest structures and ages at a land-
scape or regional scale. Several authors cited 
conservation measures using variable retention 
harvests, in which patches of unharvested ‘tree 
islands’, or ‘îlots de sénescence’, are connected 
by a network of ‘deadwood corridors’, set 
within a productive, multi-aged forest matrix 
(Vandekerkove et al. 2013; Mason and Zapponi 
2015; Larrieu et al. 2106). High density patches 
of mature trees would theoretially provide a 
more humid microclimate for fungi, bryophytes 
and lichens than would the spatially separated 
trees in a conventional coppice-with-standards 
arrangement. The best places for retaining 
veteran trees are likely to be within forest 
patches possessing a long history of continuity 
(Brin et al. 2016). Deadwood could also be 
retained in situ as part of regular harvesting, 
where the particular tree species may also be 
important. Gossner et al. (2016) suggested that 
leaving some larger-sized logs of subordinate 

trees such as Carpinus  betulus behind on the 
forest floor could help to conserve saproxylic 
beetle diversity more effectively than would 
leaving larger amounts of dominant species, 
such as beech. 

A study by Winter and Brambach (2011) showed 
that uniformly managed forests were less 
diverse in the number of different forest growth 
stages that they represented than their equiva-
lent in matched forest reserves. A landscape 
mosaic consisting of different forest types and 
ages might be expected to provide habitats for 
far more species than one type more uniformly 
managed (Schulte et al. 2006). Interacting 
patchworks, networks, and gradients within 
the landscape will ultimately determine forest 
conservation and biodiversity (Forman 1995; 
Lindenmayer and Franklin 2002). If, on the 
other hand, a whole landscape were given over 
to the small-scale dynamics of close-to-nature 
silviculture, this would tend to reduce overall 
beta-diversity and homogeneity in forest struc-
ture (Decocq et al. 2005). Building in increased 
structural diversity, using a variety of systems 
- clear-felling, shelterwood cutting, group selec-
tion, single tree selection, etc. - would offer 
greater complexity from a silvicultural point of 
view (Schall and Ammer 2013). 
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Conclusions

The Natura 2000 network uses criteria of 
species rarity and endemicity to represent 
Europe’s threatened biodiversity. This is also 
true at international, national and regional 
levels, where priority species and some habitats 
are given special conservation and protection 
status. With the emphasis on the protection of 
rare and threatened species, this appears to be 
more of a bottom-up exercise than one based 
on the habitat type (Maiorano et al. 2015). The 
former is a fine filter, whereas the latter, though 
a coarse filter, could nevertheless be regarded 
as a surrogate for the presence of notable and 
rare species. However, the Natura 2000 system 
can be said to provide a positive ‘umbrella’ for 
many groups of non-Annex species, with some 
exceptions such as amphibians and reptiles 
(European Commission 2016; van der Slius 
et al. 2016). 

An intimate knowledge of habitat requirements 
is needed to manage and maintain healthy 
populations and to balance the claims of several 
competing species. However, the Natura 2000 
exercise will always be incomplete: many taxo-
nomic groups have yet to be assessed or updated, 
as can be seen from the continuous revision 
of the European Red Lists and priority species 
lists used by different countries. In particular, 
invertebrates (such as arachnids and molluscs), 
soil fauna, bats and small mammals have poor 
representation. Taking one example, only 
17 saproxylic beetles are listed on HDII whereas 
407 appear on the EU27 Red List, 57 (14%) of 
which are in the threatened categories. Many 
are still ‘data deficient’, with more waiting to 
be assessed, some of which will likely be found 
to be threatened (Nieto and Alexander 2010) 
(Table 2). 

Although the HDII list is in serious need of 
revision and regular updating (Hochkirch et al. 

2013), this is likely to remain a long-term 
project. A recent EU Working Document on the 
two Natura 2000 Directives found that they were 
indeed ‘fit for purpose’ in achieving the broader 
framework of EU Biodiversity policy. While it 
could be argued that more improvements in 
species coverage and alignment with interna-
tional agreements would be desirable, these 
could generate uncertainty, leading to delays in 
the full implementation of the Directives while 
increasing costs and decreasing legal certainty 
(Milieu et al. 2016).  

Comparatively few Natura 2000 species are 
‘coppice’ specialists, but these and more gener-
alist species have an important role to play. 
Götmark (2013) suggested that, depending 
on forest size and objectives, four types of 
conservation management strategies should be 
combined: 

1) minimal intervention, which could eventually 
apply to coppices that are no longer managed; 

2) traditional management, based on historical 
research, such as coppicing and pollarding; 

3) non-traditional management, for example 
to promote old-growth characteristics, though 
this is not applicable to most coppices, or a 
particular composition of tree species; and 

4) management specifically to promote threat-
ened, indicator and other species. 

A silvicultural portfolio embracing the extremes 
of all successional stages, from coppicing 
of young trees through to old growth, best 
promises to enhance diversity at a landscape 
level. Forestry certification schemes currently 
set standards for tree retention and deadwood, 
but some also acknowledge the contribution to 
biodiversity of traditional forest management, 
such as coppicing and pollarding. A review of 
the impacts of forestry practices in Britain and 
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