Eucalypt coppice harvesting costs for stands of varying stump and stem densities, South Africa

Kylle Schwegman, Keith Little, Andrew McEwan and Simon Ackerman keith.little@nmmu.ac.za

Nelson Mandela Metropolitan University

for tomorrow

Nelson Mandela Metropolitan University

Background

- Data from a number of trials comparing coppice managed stands versus planted stands (over the same rotation and with the same genetic material), have shown that if properly managed:
 - productivity is comparable,
 - establishment costs are reduced, but
 - with an increase in harvesting costs (mainly due to double stems)
- Replanting is advocated if there is/are:
 - improved site x species matching (including risk mitigation),
 - improved genetics,
 - high 1R mortality, or a need to change planting density, or
 - weakly coppicing species

Current coppice management recommendations are geared towards maximised volume production, with a stepwise reduction (2 x thinnings) leaving double stems on selected stumps so as to achieve full stocking

a) 1st reduction to 2
stems per stump at
3-4 m in height

 Although robust, these recommendations do not take into consideration issues related to mechnised harvesting, in particular the efficiency of mechanised harvesting of stumps with two stems

As a first step towards generating an understanding, data related to the impact of various stump/stem coppice combinations on mechanised harvesting were obtained from 5 coppice management trials

Objectives

- Linking different coppice management regimes with mechanised harvesting in terms of cost:benefits,
- The influence of stump mortality and stem stocking on these cost:benefits,
- The contribution made by the smaller of the double stems to the final volume (where two stems have been left),
 - The influence of site, species and productivity on rotationend volume, and thus the income based on the Internal Rate of Return (IRR), and
 - The optimum coppice management regime/s if a fully mechanised CTL system (harvester-forwarder combination) is used.

Site characteristics for four of the five coppice management trials

Magisterial district, Plantation		Lower Umfolozi, Mavuya	Enseleni, Teza A	Enseleni, Teza B	Piet Retief, Vroegeveld Wes
Altitude (m a.s.l.)		30	55	75	1 291
MAT (°C)		21.8	21.8	21.8	17.1
MAP (mm)		990	916	897	858
Selected	Taxonomy	Yellow Fernwood	Yellow Fernwood	Yellow Fernwood	Hutton
topsoil	Depth (m)	+1.5	+1.5	+1.5	0.59
properties	Texture	sand	sand sand		SaCLLm
Spacing (sph)		3 x 2.5 m (1 333 sph)	3 x 2.5 m (1 333 sph)	3 x 2.5 m (1 333 sph)	3 x 2 m (1 666 sph)
Species planted		GU	GC	GC	E. dunnii
	Climate zone	ST8	ST7	ST7	WT4
Potential productivity	Growing conditions	Optimum	Optimum	Risk of drought	Optimum
	MAI m³ ha⁻¹ yr⁻¹	38-42	18	17-18	19-22

Treatments

Treat No	Treat description	No. of coppice stems left after 1 st reduction		No of coppice stems left after 2 nd reduction	Stump stock (%)	Stem stock (%)	
		2 m 4 m		8 m			
1	2m_100_s	1	-	-	100	100	
2	2m_80_s	1	-	-	80	80	
3	2m_8m_100_Or	2-3	-	1-2	100	100	
4	2m_8m_80_Or	2-3	-	1-2	80	100	
5	2m_8m_60_Or	2-3	-	1-2	60	100	
6	2m_8m_100_s	2-3	-	1	100	100	
7	2m_8m_80_s	2-3	-	1	80	80	
8	2m_8m_60_s	2-3	-	1	60	60	
9	4m_8m_100_s	-	2-3	1	100	100	
10	4m_8m_80_s	-	2-3	1	80	80	
11*	4m_8m_100_OR	-	2-3	1-2	100	100	
12*	4m_8m_80_OR	-	2-3	1-2	80	100	

Silvicultural input costs (1 Euro = 14.65 ZAR)

- Silvicultural operations were based on a rate of R135 unit⁻¹ (€ 9.2)
- Two 2^{ndry} coppice regrowth control operations were included, as well as two weeding, and thereafter two noxious weed control operations over the remainder of the 7-10 year rotation

Cost activities for the management of coppiced stands	No. of labour units (unit's ha ⁻¹)	Cost (ZAR ha ⁻¹)
Stump clearing	5	675 (€ 46.08)
1 st coppice reduction	10	1 350 (€ 92.15)
2 nd coppice reduction	6	810 (€ 55.29)
2 ^{ndry} coppice regrowth control	3.5	472.5 (€ 32.25)
Noxious weed control	0.8	215.2 (€ 14.69)
Overheads	-	900 (€ 61.43)

Rotation-end calculations

- Merchantable volumes determined per stem
 - top-end, under-bark diameter of 5cm
 - GC and GU volumes based on coppice stems
 - tree volume equations used for E. dunnii and E. smithii
- Volumes converted to tons ha-1
 - -GC = 0.75
 - -GU = 0.70
 - E. smithii = 0.81
 - *E. dunnii* = 0.88
- From this the gross income ha⁻¹ could be determined for each treatment

Harvesting and transport costs

- The stump and stem stocking, together with the individual volumes were used to determine harvesting costs based on the harvesting productivity model developed for coppice (Ramantswana *et al.* 2013).
 - based on E. grandis coppice
 - harvester costs were estimated at R1 450 (€ 98.98) per productive machine hour
- Transport costs included primary (short haul), loading and secondary (long haul)
 - R 236.6 (€ 16.15) Standardized
 - The nett income could be calculated by subtracting the harvesting and transport cost ha⁻¹ from the gross income

Cost calculations

- Net Present Value (NPV) was calculated at a discounted rate 6% over a 7-10 year rotation (dependent on site and species)
- Internal Rate of Return (IRR) could then be determined for the various coppice management scenarios at each of the five sites

Contribution of Stems A + B to Volume

Even though we try and match the two stems during thinning - one always tends to dominate

Mavuya: *E. grandis* x *E. urophylla* (1 333 sph)

Treat	Stump stock (sph)	Stem stock (sph)		Final stock	Merch Vol stem ⁻¹ (m ³)		Merch Vol ha-1 (m³ ha ⁻¹)		Total Merch Vol ha-1	MAI (m³ ha⁻¹ yr⁻¹) Adj. for
		Α	В	(sph)	Α	В	Α	В	(m ³ ha ⁻¹)	coppice rotation
2m_8m_100_Or	1 144	1 133 92%	100 8%	1 233	0.174	0.105	197 95%	11 5%	208	25.7
2m_8m_80_Or	1 000	988 86%	166 1 4%	1 154	0.192	0.137	190 90%	23 1 0%	212	26.3
2m_8m_60_Or	944	922 78%	267 22%	1 189	0.169	0.116	156 83%	31 17%	187	23.1

Teza B: E. grandis x E. camadulensis (1 333 sph)

Treat	Stump stock (sph)	Stem stock (sph)		Final stock (sph)	Merch Vol stem ⁻¹ (m³)		Merch Vol ha-1 (m ³ ha ⁻¹)		Total Merch Vol ha-1	MAI (m ³ ha ⁻¹ yr ⁻¹) Adj. for
		Α	В	\ - - <i> </i>	Α	В	Α	В	(m ³ ha ⁻¹)	rotation
2m_8m_100_Or	1 230	1 126 84%	222 1 6%	1 348 100%	0.109	0.056	123 91%	12 9%	135 1 00%	17.6
2m_8m_80_Or	1 259	993 79%	267 21%	1 260 100%	0.117	0.051	116 89%	14 11%	130 100%	16.9
2m_8m_60_Or	1 274	859 67%	430 33%	1 289 100%	0.123	0.071	106 78%	31 22%	136 100%	17.8

Individual tree volume (m³)

Volume ha⁻¹

Volume

- Volume differences between sites a function of productivity, species planted and rotation length
 - Piet Retief = drought + felled at 7yrs
 - Increasing number of stumps/stems
 - decrease in individual tree volume
 - increase in volume ha⁻¹
- Stem B smaller than Stem A
- Contribution to yield of Stem B disproportionately smaller than Stem A
 - this contribution becomes less the lower the stump stocking & hence the higher the number of double stems

Harvesting cost

IRR (NPV 6%)

Costs

- In general the harvesting costs were higher, with a lower IRR on the less productive than the more productive sites
- Higher harvesting costs were also associated with
 - those treatments that resulted in a decrease in individual stem volumes
 - an increase in the number of stumps/stems
 - an increase in the number of double stems
- Trends in IRR "not that clear", although they tend to become normalised across a treatment subset
 - in other words those factors that contribute to increased volumes per hectare (increased stem numbers - including B-Stems), result in increased harvesting costs = reduction in IRR

Conclusions (almost)

- First some things to bear in mind with this data set:
 - data from 5 trials only
 - small treatment plots (12 16 measured trees), which means that small differences can become masked and/or magnified
 - variability also present in those plots with lowered stocking due to multiple possible arrangements of missing stumps (gaps within a plot)
 - the treatments were not designed for this kind of study, rather they were cherry-picked from existing trials to help answer key questions related to stump/stem stocking and harvesting costs
 - generic equations were used that may not be the most suitable and/or precise
 - aspects such as windthrow from once-off reductions could not be determined (backwards selection of treatments)

Conclusions

Nevertheless

- Important principles were illustrated, and the data tends to support "common logic"
- The data also indicates the possibilities for alternative coppice management regimes that will favour mechanised harvesting

Way forward

- Specific treatments need to be tested & data generated that will address the highlighted short-comings
- This also needs to take into consideration coppice management regimes that are specifically geared towards maximising the volume of single stems (combined with optimising IRR)

Thank you

Department of Forestry and Wood Technology **George Campus**

Nelson Mandela Metropolitan

for tomorrow